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Abstract: We perform a heat kernel asymptotics analysis of the nonperturbative super-

potential obtained from wrapping of an M2-brane around a supersymmetric noncompact

three-fold embedded in a (noncompact) G2-manifold as obtained in [1], the three-fold be-

ing the one relevant to domain walls in Witten’s MQCD [2], in the limit of small “ζ”, a

complex constant that appears in the Riemann surfaces relevant to defining the boundary

conditions for the domain wall in MQCD. The MQCD-like configuration is interpretable,

for small but non-zero ζ as a noncompact/“large” open membrane instanton, and for van-

ishing ζ, as the type IIA D0-brane (for vanishing M -theory circle radius). We find that the

eta-function Seeley de-Witt coefficients vanish, and we get a perfect match between the

zeta-function Seeley de-Witt coefficients (up to terms quadratic in ζ) between the Dirac-

type operator and one of the two Laplace-type operators figuring in the superpotential.

Given the dissimilar forms of the bosonic and the square of the fermionic operators, this

is an extremely nontrivial check, from a spectral analysis point of view, of the expected

residual supersymmetry for the nonperturbative configurations in M -theory considered in

this work.
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1. Introduction

String and M theories on manifolds with G2 and Spin(7) holonomies have become an active

area of research, after construction of explicit examples of such manifolds by Joyce [3]. Some

explicit metrics of noncompact manifolds with the above-mentioned exceptional holonomy

groups have been constructed by Brandhuber et al and Cvectic et al [4].

Further, it will be interesting to be able to lift the Gopakumar-Vafa Chern-Simons/clo-

sed type A-topological open/closed string duality to M theory on a G2-holonomy manifold,

without having to embed it first into type IIA string theory as was done by Vafa. As

the type-A topological string theory’s partition function receives contributions only from

holomorphic maps from the world-sheet to the target space, and apart from constant

maps, instantons fit the bill, as a first step we should look at obtaining the superpotential

contribution of wrapping of an M2 brane on supersymmetric 3-cycle in a suitable G2-

holonomy manifold(membrane instantons). In terms of relating the result obtained in [5](on

membrane instanton superpotential in terms of bosonic and fermionic determinants) to that

of the 1-loop Schwinger computation of M theory and the large N -limit of the partition

function evaluated in [6], one notes that the 1-loop Schwinger computation also has as its

starting point, an infinite dimensional bosonic determinant of the type det

(

(i∂ − eA)2 −

Z2

)

, A being the gauge field corresponding to an external self-dual field strength, and Z

denoting the central charge. The large N -limit of the partition function of Chern Simons

theory on an S3, as first given by Periwal in [7], involves the product of infinite number

of sin’s, that can be treated as the eigenvalues of an infinite dimensional determinant.

This is indicative of a possible connection between the membrane instanton contribution
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to the superpotential, the 1-loop Schwinger computation and the large N limit of the

Chern-Simons theory on an S3 (See also [8]).

After the construction of noncompact (special Lagrangian) three-folds of Joyce [9] given

by the following equations (noncompact SLAGS in C3): |zi|2− t = |zj |2 = |zk|2,Re(z1z2z3)

≥ 0, Im(z1z2z3) = 0, t > 0, i 6= j 6= k = 1, 2, 3, the same have been studied in the

context of wrapping of D6-branes around noncompact SLAGS diffeomorphic to S1 × R2

in [10] - see also [11]. In this paper, we identify a noncompact instantonic configuration

in M-theory compactified on a G2-manifold with a particular supersymmetric noncompact

three-fold embedded in the same, as relevant to domain walls in MQCD. What this means

is that we consider M theory compactified on the same G2-manifold with a supersymmetric

noncompact three-fold embedded in it that appears in the study of domain walls in MQCD,

but we do not work with MQCD - we just “borrow” the MQCD-domain-wall G2, but

continue working with M theory which gives N = 1,D = 4 chiral multiplets (in addition

to gravity and U(1) vector multiplets) - there are no chiral multiplets in N = 1 MQCD. We

are considering the superpotential of an isolated membrane instanton obtained by wrapping

of an M2-brane on the aforementioned supersymmetric three-fold. We provide evidence

for the expected residual supersymmetry for the same, from a spectral analysis point of

view, by looking at the Seeley-de Witt coefficients associated with the Laplace-type and

Dirac-type operators relevant to the nonperturbative superpotential for small value of a

complex constant “ζ” that figures in Riemann surfaces relevant to MQCD. Notice that the

reason why from the heat kernel asymptotics’ point of view, the fact that the instantonic

configuration possesses some surviving supersymmetry is not obvious is because if one looks

at the forms of the Laplace-type (bosonic) operator (the relevant one denoted in this paper

by O1) and the Dirac-type (fermionic) operator (denoted in this paper by O3), then writing

O1 = Gij∂i∂j + X1 and O2
3 = Gij∂i∂j + X2, one sees that X1 is not the same as X2. Had

X1 equalled X2, then using a theorem of McKean and Singer ([12]), one would have been

assured of absence of UV divergence in ln detO1− ln detO3. The fact that, as we will show

in section 4, one still gets a perfect cancelation (to the order considered in our work), is,

we feel, a very non-trivial result.

The main idea behind this paper is to use the heat kernel asymptotics techniques to see

whether or not the aforementioned membrane instanton superpotential receives quantum

corrections from the bosonic and fermionic fluctuations, thereby verifying the expected

(because one is using a supersymmetric three-fold for wrapping the M2-brane) surviving

supersymmetry. Further, as far as we know, a spectral analysis for supersymmetric three-

folds embedded in a G2-manifold, has never been done earlier.

The plan of the paper is as follows. In section 2, we review the calculation of the

membrane instanton superpotential of [5], which is based on [13] - for this work, given the

non-singular uplift to M-theory in MQCD, we assume that there is no contribution to the

superpotential from the membrane boundary. In section 3, we discuss spin connections

for associative three-cycles based on the discussion on the same in [14]. In section 4, we

perform a heat kernel asymptotics analysis for the superpotential of section 2 and using the

results of [15], evaluate the bulk and boundary Seeley de-Witt coefficients for one of the two

Laplace-type operators and the Dirac-type operator. We obtain a remarkably perfect match
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between the two (up to O(ζ2)) thereby strongly indicative of surviving supersymmetry of

the nonperturbative configurations in M -theory considered in this work.

2. Evaluation of the membrane instanton contribution to the superpoten-

tial

In [5], one of us (AM) had worked out the membrane instanton superpotential, using

techniques developed in [13], based on the path-integral-inside-a-path integral approach

of [18]. We briefly review the same first.

As given in [14], the Euclidean action for an M2 brane is given by the following

Bergshoeff, Sezgin, Townsend action:

SΣ =

∫

Σ
d3z

[√
g

l311
− i

3!
εijk∂iZ

M∂jZ
N∂kZ

P CMNP (X(s),Θ(s))

]

, (2.1)

where Z is the map of the M2 brane world-volume to the the D = 11 target space M11, both

being regarded as supermanifolds and Σ is the M2-brane world volume. The g in (2.1), is

defined as:

gij = ∂iZ
M∂jZ

NEA
MEB

NηAB , (2.2)

where EA
M is the supervielbein, given in [14]. X(s) and Θ(s) are the bosonic and fermionic

coordinates of Z. After using the static gauge and κ-symmetry fixing, the physical degrees

of freedom, are given by ym′′

, the section of the normal bundle to the M2-brane world

volume, and Θ(s), section of the spinor bundle tensor product: S(TΣ) ⊗ S−(N), where

the − is the negative Spin(8) chirality, as under an orthogonal decomposition of TM11|Σ
in terms of tangent and normal bundles, the structure group Spin(11) decomposes into

Spin(3) × Spin(8).

The action in (2.1) needs to be expanded up to O(Θ2), and the expression is (one has

to be careful that in Euclidean D = 11, one does not have a Majorana-Weyl spinor or a

Majorana spinor) given as:

SΣ =

∫

Σ

[

C +
i

l311
vol(g) +

√
g

l311

(

gijDiy
m′′

Djy
n′′

hm′′n′′ − ym′′Um′′n′′yn′′

+ O(y3)

)

+
i

l311

√
g
1

2
(Ψ̄MV M − V̄ MΨM ) + 2

√
g

l311
gijΘ̄ΓiDjΘ + O(Θ3)

]

, (2.3)

where we follow the conventions of [14]: VM being the gravitino vertex operator, Ψ being

the gravitino field that enters via the supervielbein EA
M , U is a mass matrix defined in terms

of the Riemann curvature tensor and the second fundamental form, C is the pull-back of

the M -theory three-form potential on to the world volume of the M2-brane and Γis are

pull-backs of the eleven-dimensional gamma matrices on to Σ.

After κ-symmetry fixing, like [14], we set ΘA
.
a

2 (s) (A and
.
a index the Spin(3) and the

positive-chirality Spin(8) groups respectively), i.e., the positive Spin(8)-chirality, to zero,

and following [13], will refer to ΘAa
1 (s) as θ.
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The Kaluza-Klein reduction of the D = 11 gravitino ΨM , is given by: dxMΨM =

dxµΨµ + dxmΨµ, (µ indexes the four-dimensional Euclidean space R4(x) and m indexes

the G2 seven-fold XG2(y))Ψµ(x, y) = ψµ(x)⊗ϑ(y), Ψm(x, y) = l311
∑b3

i=1 ω
(3)
i,mnp(y)Γpqχi(x)⊗

η(y), ω(3) ∈ H3(XG2), where we do not write the terms obtained by expanding in terms of a

basis of the harmonic 2-forms of H2(XG2), as we will be interested in M2 branes wrapping

supersymmetric 3-cycles in the G2-holonomy manifold - Γpq is the antisymmetrized product

of two Cl(0, 11) generators, ψµ is the four-dimensional gravitino in the four-dimensional

N = 1 (super)gravity multiplet, χi are the four-dimensional fermions in the N = 1 chiral

multiplet (M -theory compacitified on a G2 manifold would yield a four-dimensional N = 1

theory) and η(y) is a covariantly constant spinor on the G2-manifold. For evaluating

the nonperturbative contribution to the superpotential, following [14], we will evaluate

the fermionic 2-point function: 〈χi(xu
1 )χj(xu

2 )〉 (where x1,2 are the R4 coordinates and

u [and later also v]≡ 7, 8, 9, 10 is [are] used to index these coordinates), and drop the

interaction terms in the D = 4,N = 1 supergravity action. The corresponding mass term

in the supergravity action appears as ∂i∂jW , where the derivatives are evaluated w.r.t. the

complex scalars obtained by the Kaluza-Klein reduction of C + i
l311

Φ (Φ being the closed as

well as co-closed G2-calibration three form defined over XG2) using harmonic three forms

forming a basis for H3(XG2 ,R). One then integrates twice to get the expression for the

superpotential from the 2-point function.

The bosonic zero modes are the four bosonic coordinates that specify the position of

the supersymmetric 3-cycle, and will be denoted by x7,8,9,10
0 ≡ xu

0 . The fermionic zero

modes come from the fact that for every θ0 that is the solution to the fermionic equation

of motion, one can always shift θ0 to θ0 + θ′ , where Diθ
′ = 0. This θ′ = ϑ⊗ η where ϑ is a

D = 4 Weyl spinor, and η is a covariantly constant spinor on the G2-holonomy manifold.

After expanding the M2-brane action in fluctuations about solutions to the bosonic and

fermionic equations of motion, one gets that: S|Σ = Sy
0 +Sθ

0 +Sy
2 +Sθ

2 , where Sy
0 ≡ SΣ|y0,θ0

Sθ
0 ≡ Sθ

Σ + Sθ2

Σ |y0,θ0; Sy
2 ≡ δ2SΣ

δy2 |y0,θ0=0(δy)2; Sθ
2 ≡ δ2S

δθ2 |y0,θ0=0(δθ)2. Following [13], we

consider classical values of coefficients of (δy)2, (δθ)2 terms, as fluctuations are considered

to be of O(
√

α′).

Now,

〈χi(xu
1)χj(xu

2)〉 =
∫

DχeK.E of χχi(x)χj(x)

∫

d4x0e
−Sy

0

×
∫

dϑ1dϑ2e−Sθ
0

∫

Dδym′′

e−Sy
2

∫

Dδθ̄Dδθe−Sθ
2 . (2.4)

We now evaluate the various integrals that appear in (2.4) above starting with
∫

d4x×
e−Sy

0 :
∫

d4x0e
−Sy

0 =

∫

d4x0e
[iC− 1

l3
11

vol(g)]
. (2.5)

Using the 11-dimensional Euclidean representation of the gamma matrices as given in

[14], Sθ
0+Sθ2

0 |Σ = i
2l311

∫

Σ

√
gΨ̄MVMd3s, where using ∂ix

u
0 = 0, and using U to denote coordi-
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nates on the G2-holonomy manifold, V U = gij∂iy
U
0 ∂jy

V γV θ0 + i
2εijk∂iy

U
0 ∂jy

V
0 ∂ky

W
0 ΓV W θ0,

∫

dϑ1dϑ2e
i

2l3
11

Pb3
I=1

P2
α=1

P8
i=1(χ̄(x)σ(i))αϑαω

(i)
I

= − 1

4l311

b3
∑

I=1

8
∑

i<j=1

ω
(i)
I ω

(j)
I (χ̄σ(i))1(χ̄σ(j))2,

(2.6)

where one uses that for G2-spinors, the only non-zero bilinears are: η†Γi1...ipη for p = 0(≡
constant), p = 3(≡ calibration 3-form), p = 4(≡ Hodge dual of the calibration 3-form)

and p = 7(≡ volume form). We follow the following notations for coordinates: u, v are

R4 coordinates and U, V index G2-holonomy manifold coordinates. The tangent/curved

space coordinates for Σ are represented by a′/m′ and those for XG2 × R4 are represented

by a′′/m′′.

We now come to the evaluation of Sθ
2 |y0,θ0=0. Using the equality of the two O((δΘ)2)

terms in the action of Harvey and Moore, and arguments similar to the ones in [13],

one can show that one needs to evaluate the following bilinears: δΘ̄Γa′∂iδΘ, δΘ̄Γa′′∂iδΘ,

δΘ̄Γa′ΓABδΘ, and δΘ̄Γm′′ΓABδΘ. Evaluating them, one gets:

Sθ
2 |y0,θ0=0 ≡

∫

Σ
d3sδθ†O3δθ, (2.7)

where O3 ≡ √
ggijΓiDj , the precise definition of Γi will be given later. Hence, the integral

over the fluctuations in θ will give a factor of
√

detO3 in Euclidean space.

The expression for Sy
2 |Σy0,θ0=0 is identical to the one given in [13], and will contribute

1√
detO1detO2

, where O1 and O2 are as given in the same paper:

O1 ≡ ηuv
√

ggijDi∂j

O2 ≡ √
g(gijDihÛ V̂

Dj + U
ÛV̂

). (2.8)

The mass matrix U is expressed in terms of the curvature tensor and product of two

second fundamental forms. Di is a covariant derivative with indices in the correspond-

ing spin-connection of the type (ωi)
m′′

n′′ and (ωi)
m′

n′ , and Di is a covariant derivative with

corresponding spin connection indices of only the latter type.

Hence, modulo supergravity determinants, and the contribution from the fermionic

zero modes, the exact form of the superpotential contribution coming from a single M2

brane wrapping an isolated supersymmetric cycle of G2-holonomy manifold, is given by:

∆W = e
iC− 1

l3
11

vol(h)
√

detO3

detO1 detO2
. (2.9)

Note that the result (2.9), unlike that of [14], is also applicable for non-rigid three-cycles

(implying b1(Σ) 6= 0). We do not bother about 5-brane instantons, as we assume that

H6 = 0 for the G2-manifold. One should bear in mind that it is only for compact G2-

manifolds X7 that H4
7 (X7), valued in the seven-dimensional representation of the G2-group,

and therefore H3(X7) vanishes - note however H4(X7) = H4
1 (X7)⊕H4

7 (X7)⊕H4
27(X7) (for a

compact X7) - hence (for a compact X7), H4(X7) and hence H3(X7) is non-trivial. Besides,

we are working with a noncompact G2 manifold [16]. Even though we have turned off the

– 5 –
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G-flux and the calibration three-form characterizing X7 is closed, H4(X7) and therefore

H3(X7) are still non-trivial. Part of the reason is the shift of the quantization of the G-

flux (See [17]):
[

G
2π

]

− λ
2 ∈ H4(X7,Z), where the characteristic class λ is given by p1(X7)

2 ,

p1(X7) being the first Pontryagin class. For a G2 manifold, p1(X7) = p1(X8 = X7 × S1),

X7 × S1 being a spin eight-manifold (See [14]), for which p1 is even. According to the

Wu’s formula (See [17]), the intersection form of a spin eight-fold satisfies the following

relation: x2 ∼= x ∧ λ mod 2, where x ∈ H4(X8,Z). Hence, for a spin manifold, λ is even if

the intersection form is even - the intersection form for X8 is even, thereby justifying the

switching off of G. Further, p1(X7) 6= 01 implying that H4(X7) and therefore H3(X7) can

not be trivial.

To actually evaluate the Seeley-de Witt coefficients for Laplace-type operators (See

(4.10)) we need to find an example of a regular G2-holonomy manifold that is locally

Σ × M4, where Σ is a supersymmetric 3-cycle on which we wrap an M2 brane once, and

M4 is a four manifold. The condition for supersymmetric cycle: Φ|Σ = vol(Σ), is what is

solved for in [1]. Such a three-fold will be discussed in section 4 in the context of MQCD.

3. Spin Connection for Associative 3-Cycles in G2 Manifolds

We now discuss how to figure out the independent components of the spin connection of the

type ωa′b′′

i (the superindices indexing the tangent space indices as explained below equation

(6) above: i indexes Σ, a′ indexes the tangent space of Σ and b′′ indexes the tangent space

corresponding to directions normal to Σ).

The bi-spinorial representation of the components of the spin connection ωa′b′

i , ωa′′b′′

i ,

ωa′b′′

i can be worked out as below. Let ωa′b′

i ≡ εa′b′c′ωc′

i . We can then construct ωAB
i ≡

(
∑3

a′=1 ωa′+2
i σa′

)AB ≡ ωAB
i (where σa′

are the Pauli matrices and A,B are the bispinorial

indices), abbreviated as ω‖. The components ωa′′b′′

i , with a′′, b′′ = 6, 7, 8, 10 can be split

into three self-dual and three anti-self-dual components:

ω67
i + ω810

i ≡ (ω+
i )1,

ω68
i + ω10 7

i ≡ (ω+
i )2,

ω6 10
i + ω78

i ≡ (ω+
i )3, (3.1)

and

ω67
i − ω810

i ≡ (ω−
i )1,

ω68
i − ω10 7

i ≡ (ω−
i )2,

ω6 10
i − ω78

i ≡ (ω−
i )3, (3.2)

from which one constructs
∑3

a=1(ω
+
i )aσa ≡ (ω+

i )Y Y ′

, abbreviated as ω+
⊥, and

∑3
a=1(ω

−
i )aσa

≡ (ω−
i )Ẏ Ẏ ′

, abbreviated as ω−
⊥. For the “off-diagonal” components ωa′b′′ , one constructs

1As an example of a compact X7, one could consider T7

Γ
with fixed points for Γ - see [3] - p1(X7)

for compact X7 with holonomy given by G2, is non-zero and satisfies the equation: 〈p1 ∪ φ, [X7]〉 =

− 1
8π2

R

X7

|R|2 < 0 (See [16]), φ being the (co)closed calibration three-form

– 6 –
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∑3
a′=1(ω

a′b′′)σa′ ≡ (ωi)
ABb′′ , and further (ωAB6

i 12 + ωAB7
i σ1 + ωAB8

i σ2 + ωAB 10
i σ3)Y Ẏ ≡

(ω)ABY Ẏ
i .

For associative three-cycles, (ω)ABY Ẏ
i is symmetric w.r.t. A,B and Y and ω‖ = ω−

⊥
(See [14].). Assuming ω+

⊥ = 0, implying ω67
i = −ω8 10

i , ω68
i = −ω10 7

i , ω6 10
i = −ω78

i , the

relation ω‖ = ω−
⊥ implies: 1

2ω1
i = ω67

i , 1
2ω2

i = ω68
i , 1

2ω3
i = ω6 10

i . Hence,

ωa′′b′′

i =











0 1
2ω1

i
1
2ω2

i
1
2ω3

−1
2ω1

i 0 −1
2ω3

i
1
2ω2

i

−1
2ω1

i
1
2ω3

i 0 −1
2ω61

i

−1
2ω3

i −1
2ω2

i −1
2ω61

i 0











. (3.3)

Now,

(

3
∑

a′=1

ωa′+2 b′′

i σa′

)AB =

(

ω5b′′

i ω3b′′

i − iω4b′′

i

ω3b′′

i + iω4b′′

i −ω5b′′

i

)AB

. (3.4)

Hence, for A = B = 1 or 2, consider

±
(

ω56
i 12 + ω57

i σ1 + ω58
i σ2 + ω5 10

i σ3

)Y Ẏ

= ±
(

ω56
i + ω5 10

i ω57
i − iω58

i

ω57
i + iω58

i ω56
i − ω5 10

i

)Y Ẏ

, (3.5)

and for A = 1, B = 2, consider:

(

(ω36
i − iω46

i )12 + (ω37
i − iω47

i )σ1 + (ω38
i − iω48

i )σ2 + (ω3 10
i − iω4 10

i )σ3

)Y Ẏ

=

(

(ω36
i − iω46

i ) + (ω3 10
i − iω4 10

i ) (ω37
i − iω47

i ) − i(ω38
i − iω48

i )

(ω37
i − iω47

i ) + i(ω38
i − iω48

i ) (ω36
i − iω46

i ) − (ω3 10
i − iω4 10

i )

)Y Ẏ

. (3.6)

Now, (ωi)
1111̇, (ωi)

1112̇, (ωi)
2221̇, (ωi)

2222̇ are already symmetric in A,B, Y . Now,

(ωi)
1121̇ = ω57

i + iω58
i ,

(ωi)
1211̇ = (ω36

i + ω3 10
i ) − i(ω46

i + ω4 10
i ),

(ωi)
2111̇ = (ω36

i + iω3 10
i ) + i(ω46

i + ω4 10
i ). (3.7)

Hence, ω1121̇
i = ω1211̇

i = ω2111̇
i implies

ω57
i = ω36

i + ω3 10
i ; ω58

i = 0; ω46
i = −ω4 10

i . (3.8)

Similarly,

(ωi)
1122̇ = ω56

i − ω5 10
i ,

(ωi)
1212̇ = (ω37

i − ω48
i ) − i(ω47

i + ω38
i ),

(ωi)
2112̇ = (ω37

i + ω48
i ) − i(−ω47

i + ω38
i ), (3.9)
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and their equality would imply:

ω47
i = ω38

i = ω48
i = 0; ω37

i = ω56
i − ω5 10

i , (3.10)

and the equality of:

(ωi)
1221̇ = (ω37

i + ω48
i ) + i(ω38

i − ω47
i ),

(ωi)
2121̇ = (ω37

i − ω48
i ) + i(ω47

i + ω38
i ),

ω2211̇
i = ω5 10

i − ω56
i , (3.11)

implies

ω37
i = ω56

i = ω5 10
i = ω38

i = ω47
i = 0, (3.12)

and finally the equality of:

(ωi)
1222̇ = (ω36

i − ω3 10
i ) − i(ω46

i − ω4 10
i ),

(ωi)
2122̇ = (ω36

i − ω3 10
i ) + i(ω46

i − ω4 10
i ),

(ωi)
2212̇ = −ω57

i + iω58
i , (3.13)

implies:

ω46
i = ω4 10

i = ω58
i = ω36

i = 0, ω57
i = ω3 10

i − ω36
i . (3.14)

One thus gets:

ωa′b′′

i =







ω36
i ω37

i ω38
i ω3 10

i

ω46
i ω47

i ω48
i ω4 10

i

ω56
i ω57

i ω58
i ω5 10

i






= ω3 10

i







0 0 0 1

0 0 0 0

1 1 0 1






. (3.15)

Hence, for associative three-folds, the number of independent components in the off-

diagonal spin-connection is one: ω3 10
i . We will set it to zero. The off-diagonal spin-

connection component being set to zero towards the end of section 3, is a consequence of

the fact that for associative three-folds embedded in a G2-manifold (See [14]), as consid-

ered in our work, (i) the self-dual piece of the connection on the normal bundle, “ω+
⊥”,

is unconstrained, and (ii) the connection on the tangent bundle, “ω‖” gets identified with

the anti-self dual connection on normal bundle “ω−
⊥” - this is what was used in section 3.

These follow from the covariant constancy of a G2 spinor and describe the decomposition

of the adjoint representation of G2 ⊂ Spin(7) under SO(3) ⊕ SO(4). The aforementioned

identification of spin connections is standard to “topological twisting” (See [14] and refer-

ences therein) - one must keep in mind that one of the results of [14] is that the low energy

fluctuations of an M2-brane wrapped around a supersymmetric three-fold is described by

a three dimensional topological field thory. The results of this section will be utilized

when evaluating the Seeley de-Witt coefficients for the Dirac-type operator O3 in the next

section.
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4. Heat kernel Asymptotics of MQCD-like Supersymmetric Three-Fold

embedded in G2 Seven-Fold

This section forms the core of the new results in this paper. We begin with a discussion

of supersymmetric three-folds relevant to domain walls in MQCD and show that a certain

infinite series, in the limit of a small complex constant ζ, can in fact be summed to give a

closed expression. We then proceed with the heat kernel asymptotics analysis by discussing

the evaluation of the generalized zeta and eta function Seeley de-Witt coefficients relevant

to the Laplace-type operator O1 and the Dirac-type operator O3. The main result that

we get is (a) vanishing of the generalized eta function coefficients, and (b) a perfect match

between the generalized zeta function coefficients for O1 and O2
3 - all calculations are done

up to O(ζ2). The importance of these results was commented upon in the introduction

and we make more comments in the section on conclusion. As an aside, we discuss a

possible connection between the antiholomorphic involution relevant to Joyce’s construction

of “barely G2 manifolds” from Calabi-Yau three-folds, and a similar involution symmetry

of the supersymmetric three-fold - this three-fold turns out not to be a three-cyle, but

a three-fold with boundary (this necessitates the discussion of, both, bulk and boundary

Seeley de-Witt coefficients).

In MQCD [2], discrete chiral symmetry breaking results in the formation of domain

wall separating different vacua, whose world-volume is topologically given by R3(x0,1,2) ×
S(x3,4,5), where S is a supersymmetric three-fold embedded in a G2-manifold that is topo-

logically R(x3)×R5(x4,5,6,7,8)×S1(x10) Complexifying the coordinates, v = x4 + ix5, w =

x7+ix8, s = x6+ix10, t = e−s, the boundary condition on S is that as x3 → −∞, S → R×Σ

and as x3 → ∞, S → R × Σ′, where Σ : w = ζv−1, t = vn and Σ′ : w = e
2πi
n ζv−1, t = vn.

The calibration for G2 manifolds can be written as: Φ = e123 + e136 + e145 + e235 − e246 +

e347+e567 ( eijk ≡ ei∧ej∧ek), and then the supersymmetric three-fold embedded in the G2-

manifold will be given as: w = w(x3, v, v̄), s = s(x3, v, v̄). Then, defining the embedding as

x6 = A(x, y, z), x7 = C(x, y, z), x8 = D(x, y, z), x10 = B(x, y, z), x, y, z being the M2-brane

world-volume coordinates, the condition for supersymmetric cycle: Φ|S =
√

gdx3∧dx4∧dx5,

after further relabeling x3,4,5 as z, x, y and after assuming: ∂xA = ∂yB, ∂yA = −∂xB(≡
Cauchy-Riemann condition), translates to give:

[∂xA∂zA − ∂y∂zB + ∂xC∂zC − ∂yC∂zD]2 + [∂yA∂zA + ∂xA∂zB + ∂yC∂zC + ∂xC∂zD]2

= [1 + (∂xA)2 + (∂yA)2 + (∂xC)2 + (∂yC)2][(∂zA)2 + (∂zB)2 + (∂zC)2 + (∂zD)2]. (4.1)

The ansatz to solve (4.1) for the embedding of the supersymmetric 3-cycle in the G2-

manifold, taken in [1] was:

v =

[

e
y1
2 +

∞
∑

m=1

(

1

2coshy3

)2m

f2m(y1)

]

eiy2 ,

w = −ζtanhy3

[

e−
y1
2 +

∞
∑

m=1

(

1

2coshy3

)2m

g2m(y1)

]

e−iy1 ,

s = −y1 −
∞
∑

m=1

(

1

2coshy3

)2m

h2m(y1) − 2iy2, (4.2)
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where for the SU(2) group, f2m, g2m, h2m can be complex, but were taken to be real in [1].

The condition for getting a supersymmetric 3-cycle implemented by ensuring that the pull-

back of the calibration Φ to the world volume of the 3-cycle is identical to the volume form

on the 3-cycle, gives recursion relations between the coefficients f2m and g2m, by setting

h2m = 0, e.g. for m = 1, as shown in [1],

−ζe−
y1
2 ∂1f2 + (2e

y1
2 +

ζ

2
e−

y1
2 )f2 − ζe

y1
2 ∂1g2 − (2ζ2e

−y1
2 +

ζ

2
e

y1
2 )g2 = −4ζ2e

−y1
2 ,

−(ζ2e−y1 + 4)f2 + 2ζ∂1g2 − (ζ2 − ζ)g2 = −2ζ2e
−y1

2 . (4.3)

One can substitute for f2 from the second equation and get a second order differential

equation for g2. However, it is shown that in the limit ζ → 0, one can consistently set

f2m = h2m = 0,m ≥ 1. Further, surprisingly, as perhaps missed to be noticed in [1], one

also gets the following differential equation for all g2m’s, m ≥ 1:

2∂1g2m + g2m = O(ζ) → 0, (4.4)

implying

g2m = e
−x
2 , m ≥ 1. (4.5)

Hence, (4.2) becomes:

v(x, z) = e
x
2
+iy,

w(x, z) = −ζ
tanh(z)e

−x
2

1 − (sech(z)
2 )2

e−iy,

s(x, y) = −x − 2iy. (4.6)

One thus gets a convergent solution, unlike the case for finite ζ as pointed out in [21].

We now consider an M-theory instanton obtained by wrapping a Euclidean M2-brane

around the supersymmetric noncompact three-fold embedded in a G2-manifold relevant

to MQCD, and perform a heat kernel asymptotics analysis for the membrane instanton

superpotential as obtained in (2.9) and explore the possibility of cancelations between the

bosonic and fermionic determinants. For bosonic determinants detAb, the function that

is relevant is the generalized zeta function, ζ(s|Ab), and that for fermionic determinants

detAf , the function that is additionally relevant is the generalized eta function, η(s|Af ).

The integral representation of the former involves Tr(e−tAb), while that for the latter

involves Tr(Ae−tA2
) (See [19]):

ζ(s|Ab) =
1

Γ(2s)

∫ ∞

0
dtts−1Tr(e−tAb); η(s|Af ) =

1

Γ(s+1
2 )

∫ ∞

0
dtt

s+1
2 Tr(Afe−tA2

F ), (4.7)

where to get the UV-divergent contributions, one looks at the t → 0 limit of the two terms.

To be more precise (See [20])

lndetAb = − d

ds
ζ(s|Ab)|s=0
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= − d

ds

(

1

Γ(s)

∫ ∞

0
dtts−1Tr(e−tAb)

)

|s=0;

lndetAf = −1

2

d

ds
ζ(s|A2

f )|s=0 ∓
iπ

2
η(s|Af )|s=0 ±

iπ

2
ζ(s|A2

f )|s=0

=

[

−1

2

d

ds
± iπ

2

](

1

Γ(s)

∫ ∞

0
dtts−1Tr(e−tA2

f )

)

|s=0 ∓
iπ

2

1

Γ(s+1
2 )

×
∫ ∞

0
dtt

s+1
2

−1Tr(Afe−tA2
f )|s=0,

(4.8)

where the ∓ sign in front of η(0), a non-local object, represents an ambiguity in the

definition of the determinant. The ζ(0|A2
f ) term can be reabsorbed into the contribution

of ζ ′(0|A2
f ), and hence will be dropped below. Here Tr ≡

∫

dx〈x| . . . |x〉 ≡
∫

dxtr(. . .). The

idea is that if one gets a match in the Seeley - de Witt coefficients for the bosonic and

fermionic determinants, implying equality of UV-divergence, this is indicative of a possible

complete cancelation.

The heat kernel expansions for the bosonic and fermionic determinants [15], in three

dimensions, are given by:

tr(e−tAb) =

∞
∑

n=0

en(x,Ab)t
(n−3)

2 , tr(Afe−tA2
f ) =

∞
∑

n=0

an(x,Af )t
(n−4)

2 . (4.9)

For Laplace-type operators Ab and A2
f (the b implies bosonic and f implies fermionic), the

non-zero coefficients in the bulk, are determined to be the following:

e0(x,Ab) = (4π)−
3
2 Id, e2(x,Ab) = (4π)−

3
2

[

α1E + α2R Id

]

, (4.10)

where R is the Ricci scalar constructed from suitable pull-backs of the metric and affine

connection, αi’s are constants, Id is the identity that figures with the scalar leading symbol

in the Laplace-type operator Ab (See [15]), and

E ≡ B − Gij(∂iωj + ωiωj − ωkΓ
k
ij),

Ab ≡ −(GijId∂i∂j + Ai∂i + B),

ωi =
Gij(A

j + GklΓj
klId)

2
. (4.11)

For matrix-valued E, as will be the case for the Laplace-type O1 and the Dirac-type O3 in

this paper, it is understood that one has to take a trace.

From the expressions of O1,2,3, one sees that the effective pullback of the metric (which

gets used in, e.g., (4.10) and (4.11)) on to the world volume of the supersymmetric 3-cycle

is given by:

Gij =
gij√

g
=





G11 0 G13

0 G22 0

G13 0 G23



 ,
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where the components are either O(1) + O(ζ2), e.g.,

G11 =

√

(

4 + e
x
2

)

(4 + ex)

2 (4 + ex)
+

4











2 tanh(z)2

(−4+sech(z)2)
2 −

ţ

4+e
x
2

ű

tanh(z)2

(−4+sech(z)2)2
+(4+ex)

0

@

ţ

4+e
x
2

ű

(2+cosh(2 z))2

(1+2 cosh(2 z))4
+ tanh(z)2

(−4+sech(z)2)2

1

A

4+ex











ζ2

ex

√

(

4 + e
x
2

)

(4 + ex)

+ O(ζ)3,

or O(ζ2), e.g.,

G13 =
−8 (2 + cosh(2 z)) sinh(2 z) ζ2

ex

√

(

4 + e
x
2

)

(4 + ex) (1 + 2 cosh(2 z))3

+ O(ζ)3,

The corresponding vielbeins (which get used in the evaluation of spin connections

relevant to (4.15)-(4.17)) are therefore given by:

e a′

i =





0 e 2
1 e 3

1

0 e 1
2 e 3

2

e 1
3 0 0



 ,

where all components are of O(1) + O(ζ2), e.g.,

e 2
1 =

e
x
2 cos(y)

√
2

((

4 + e
x
2

)

(4 + ex)
)

1
4

−

2
√

2 cos(y)

(
“

4+e
x
2

”

tanh(z)2

(−4+sech(z)2)
2 + (4 + ex)

(
“

4+e
x
2

”

(2+cosh(2 z))2

(1+2 cosh(2 z))4
+ tanh(z)2

(−4+sech(z)2)
2

))

ζ2

e
x
2

((

4 + e
x
2

)

(4 + ex)
)

5
4

+O(ζ)3,

and

E a′′

i =





E 1
1 E 2

1 E 3
1 0

0 E 2
2 E 3

2 E 4
2

0 E 2
3 E 3

3 0





where the components are either of O(1) + O(ζ2), e.g.,

E 1
1 = −

((

1 +
e

x
2

4

)

(4 + ex)

)−( 1
4)

+

4
√

2

(
“

4+e
x
2

”

tanh(z)2

(−4+sech(z)2)
2 + (4 + ex)

(
“

4+e
x
2

”

(2+cosh(2 z))2

(1+2 cosh(2 z))4
+ tanh(z)2

(−4+sech(z)2)
2

))

ζ2

ex
((

4 + e
x
2

)

(4 + ex)
)

5
4

+ O(ζ)3,
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or of O(ζ), e.g.,

E 2
1 =

−2 cos(y) tanh(z) ζ

e
x
2

((

1 + e
x
2

4

)

(4 + ex)
)

1
4

(

−4 + sech(z)2
)

+ O(ζ)3.

The affine connection (relevant for evaluation of ωb
i - see (4.18) - which gets used in

the evaluation of ens via (4.11) and (4.10)) for Gij are given as under:

Γi
jk =









































Γ1
11 O(ζ)4 Γ1

13

O(ζ)4 Γ1
22 O(ζ)4

O(ζ)4 Γ1
32 Γ1

33

O(ζ)4 Γ2
12 O(ζ)4

Γ2
21 O(ζ)4 Γ2

23

O(ζ)4 Γ2
32 O(ζ)4

Γ3
11 O(ζ)4 Γ3

13

O(ζ)4 Γ3
22 O(ζ)4

Γ3
31 O(ζ)4 Γ3

33









































.

Using Γi
jk, one can then evaluate the various components of the curvature tensor, the

non-zero being: R2
121, R

3
131, R

2
123, R

3
232, R2

323, R
4
343. Using these, one evaluates the non-zero

components of the Ricci tensor: R11, R13, R22 and R33 which gives the Ricci scalar (relevant

for evaluation of the Seeley de-Witt coefficient e2(x,O1 or 2 or O2
3) - see (4.10) ):

R = O(1) + O(ζ2) + O(ζ4),

where the first two terms, which can be easily calculated, are relevant to the order we are

working. As the actual expression for R does not explicitly get used in this paper and is

also very long, we skip giving the same.

The three-fold is topologically M3 = R × [0, 1] × S1, implying that it has a boundary

which is given by ∂M3 = (R × S1, 0) ∪ (R × S1, 1). Note that configurations involving

branes wrapping noncompact cycles have been studied earlier - see [10]. The three-fold is

given by the set of following equations:

(x4)2 + (x5)2 = e−x6
,

x5

x4
= −tan(

x10

2
),

x8

x7
= tan(

x10

2
),

(x7)2 + (x8)2 =
ζ2ex6

(2 − 3x8e
−

x6

2 sec(x10

2
)

4ζ
− 2

√

1 − 3x8e
−

x6
2 sec(x10

2
)

4ζ
)

4

(

3 −

(

2− 3x8e
−

x6
2 sec( x10

2 )

4ζ
−2

s

1− 3x8e
−

x6
2 sec( x10

2 )

4ζ

)

4

)2

. (4.12)
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One notices the following Z2 symmetry of (4.12):

x4,7,6 → x4,7,6; x5,8,10 → −x5,8,10; ζ → −ζ. (4.13)

Notice that under the above antiholomorphic involution: J = du ∧ dū + dv ∧ dv̄ + ds ∧ ds̄

is reflected, and Ω = du ∧ dv ∧ ds is complex conjugated. This is related to the involution

used in the construction of a G2 manifold from a Calabi-Yau three-fold using the Joyce’s

prescription: CY3×S1

Z2
.

Given that the supersymmetric three-fold M3 has a nontrivial boundary, in addition

to the bulk Seeley de-Witt coefficients given by (4.10), one also needs to evaluate boundary

Seeley-de Witt coefficients. The latter for M3 of (4.12) are given by (See [15]):

a∂M3
1 =

1

4π
(

Γ(3
2)

Γ(1
2 )Γ(2)

− 1)tr1,

a∂M3
2 =

1

(4π)
3
2

1

3
(1 − 3

4
π

Γ(3
2 )

Γ(1
2)Γ(2)

)Πii|∂M3 , (4.14)

Πii being the trace of the second fundamental form. The second fundamental form is given

by: Πij = 〈n,5ui
vj〉, where the tangent vectors ui = ∂xm

∂yi ∂m, and similarly for vj, where

m takes values 3, 6, 10. For ∂M3, M3 being given by (4.12), Πij = nx6 ∂2x6

∂yi∂yj
, which for the

embedding x6 = −y1, vanishes.

We now proceed with the evaluation of the bulk Seeley de-Witt coefficients as given

in (4.10). For this we would first evaluate Ai
bs (the “b” implies relevant to bosonic operators)

utilizing the results for the vielbeins obtained earlier in this section. This is done in

equations (4.15)-(4.17). Using the results for Ai
bs, we would then calculate ωb

i s. The same

is done in equation (4.18) for ωb
1 - one can similarly evaluate ωb

2 and ωb
3. We would then be

able to calculate E, which would enable us to evaluate ens. This is done in equations (4.19)-

(4.22).

For the operator O1, the expressions for Ai
b (see (2.8) and (4.11) ) are given as:

A1
b = δuvG

1j(ωj|M3 + ωj|N(M3)↪→XG2
)

=























0 a12 a13 0 0 0 0

−a12 0 a23 0 0 0 0

−a13 −a23 0 0 0 0 0

0 0 0 0 a45 a46 O(ζ)2

0 0 0 −a45 0 a56 a57

0 0 0 −a46 −a56 0 a67

0 0 0 O(ζ)2 −a57 −a67 0























(4.15)

(u, v index R4-valued coordinates and N(M3) is the normal bundle to M3). Similarly,

A2
b = δuvG

2j(ωj |M3 + ωj|N(M3)↪→XG2
)
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=























0 b12 b13 0 0 0 0

−b12 0 b23 0 0 0 0

−b13 −b23 0 0 0 0 0

0 0 0 0 b45 b46 b47

0 0 0 −b45 0 b56 b57

0 0 0 −b46 −b56 0 b67

0 0 0 −b47 −b57 −b67 0























, (4.16)

and

A3
b = δuvG

3j(ωj |M3 + ωj|N(M3)↪→XG2
)

=























0 c12 c13 0 0 0 0

−c12 0 c23 0 0 0 0

−c13 −c23 0 0 0 0 0

0 0 0 0 c45 c46 O(ζ)2

0 0 0 −c45 0 c56 O(ζ)2

0 0 0 −c46 −c56 0 O(ζ)2

0 0 0 O(ζ)2 O(ζ)2 O(ζ)2 0























, (4.17)

where the various non-zero elements can easily be worked out.

To evaluate the ζ Seeley de-Witt coefficients, one needs to evaluate ωb
i . The expressions

for ωb
i are given as:

ωb
1 =

G1j

2
(Aj

b + GklΓj
kl17)

=























w111 w112 w113 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

w121 w122 w123 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

w131 w132 w133 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

O(ζ)4 O(ζ)4 O(ζ)4 w144 w145 w146 O(ζ)2

O(ζ)4 O(ζ)4 O(ζ)4 w154 w155 w156 w157

O(ζ)4 O(ζ)4 O(ζ)4 w164 w165 w166 w167

O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)2 w175 w176 w177

)























(4.18)

One can similarly evaluate expressions for ωb
2,3, using which one can evaluate E(O1) =

Eb
1 + Eb

2 + Eb
3, where

Eb
1 = −Gij∂iω

b
j

=























E111 E112 E113 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

E121 E122 E123 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

E131 E132 E133 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

O(ζ)4 O(ζ)4 O(ζ)4 E144 E145 E146 O(ζ)2

O(ζ)4 O(ζ)4 O(ζ)4 E154 E155 E156 E157

O(ζ)4 O(ζ)4 O(ζ)4 E164 E165 E166 E167

O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)2 E175 E176 E177























, (4.19)

where the non-zero elements can be easily worked out. Similarly,

Eb
2 = −Gijωb

iω
b
j
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=























E211 E212 E213 O(ζ)8 O(ζ)8 O(ζ)8 O(ζ)8

E221 E222 E223 O(ζ)8 O(ζ)8 O(ζ)8 O(ζ)8

E231 E232 E233 O(ζ)8 O(ζ)8 O(ζ)8 O(ζ)8

O(ζ)8 O(ζ)8 O(ζ)8 E244 E245 E246 E247

O(ζ)8 O(ζ)8 O(ζ)8 E254 E255 O(ζ)4 E257

O(ζ)8 O(ζ)8 O(ζ)8 E264 O(ζ)4 E266 E267

O(ζ)8 O(ζ)8 O(ζ)8 E274 E275 E276 E277























(4.20)

and

Eb
3 = Gijωb

kΓ
k
ij

=























E311 E312 E313 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

E321 E322 E323 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

E331 E332 E333 O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)4

O(ζ)4 O(ζ)4 O(ζ)4 E344 E345 E346 O(ζ)2

O(ζ)4 O(ζ)4 O(ζ)4 E354 E355 E356 E357

O(ζ)4 O(ζ)4 O(ζ)4 E364 E365 E366 E367

O(ζ)4 O(ζ)4 O(ζ)4 O(ζ)2 E375 E376 E377























. (4.21)

One thus gets:

tr(E(O1)) = tr(Eb
1 + Eb

2 + Eb
3)

=
(4 + ex) (−1536 e

x
2 + 2192 ex + 64 e

3 x
2 + 216 e2 x − 112 e

5 x
2 + e3 x)

128 ((4 + e
x
2 ) (4 + ex))

5
2

+

Eζ2

128 ex ((4 + e
x
2 ) (4 + ex))

7
2 (1 + 2 cosh(2 z))6

+ O(ζ3), (4.22)

where

E ≡ (4 + e
x)

 

4237426688 + 4268851200e
x

2 + 4797884672e
x + 3473765744e

3x

2

+2023406480e
2x + 1003298120e

5x

2 + 381310232e
3x + 117349175e

7x

2 + 28347453e
4x

+4231472e
9x

2 + 267264e
5x + 4(617218048 + 628211712e

x

2 + 705386752e
x

+512375632e
3x

2 + 299013040e
2x + 148217272e

5x

2 + 56510632e
3x + 17391397e

7x

2 + 4212567e
4x

+635494e
9x

2 + 40704e
5x) cosh(2z) − 4(554958848 + 551976960e

x

2 + 620804864e
x

+447750848e
3x

2 + 260136512e
2x

+129088208e
5x

2 + 48864080e
3x + 15043796e

7x

2 + 3621852e
4x + 532883e

9x

2 + 33024e
5x) cosh(4z)

−726663168 cosh(6z) − 733347840e
x

2 cosh(6z) − 821714944e
x cosh(6z) − 596084096e

3x

2 cosh(6z)

−346978944e
2x cosh(6z) − 172383936e

5x

2 cosh(6z) − 65568064e
3x cosh(6z)

−20221080e
7x

2 cosh(6z) − 4890248e
4x cosh(6z) − 728600e

9x

2 cosh(6z)

−46080e
5x cosh(6z) − 25165824 cosh(8z) − 30932992e

x

2 cosh(8z)

−32834560e
x cosh(8z) − 25648768e

3x

2 cosh(8z)

−15232384e
2x cosh(8z) − 7692928e

5x

2 cosh(8z) − 3094272e
3x cosh(8z) − 975624e

7x

2 cosh(8z)

−247896e
4x cosh(8z) − 41180e

9x

2 cosh(8z) − 3072e
5x cosh(8z)
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+2621440 cosh(10z) + 2031616e
x

2 cosh(10z)

+2505728e
x cosh(10z) + 1632320e

3x

2 cosh(10z) + 924608e
2x cosh(10z) + 455648e

5x

2 cosh(10z)

+149152e
3x cosh(10z) + 43780e

7x

2 cosh(10z) + 8748e
4x cosh(10z) + 960e

9x

2 cosh(10z)

−131072 cosh(12z) − 98304e
x

2 cosh(12z)−110848e
x cosh(12z)−63984e

3x

2 cosh(12z)−32528e
2x cosh(12z)

−12296e
5x

2 cosh(12z) − 5464e
3x cosh(12z) − 1535e

7x

2 cosh(12z) − 469e
4x cosh(12z)

!

. (4.23)

Despite the very complicated and long (4.22) and (4.23), we will see shortly that one

gets a remarkable result, which is that the square of the relevant Dirac-type operator,

“A2
f” (“f” denoting fermionic) - O2

3 - contributes precisely as “Ab”(≡ O1) - see (4.33).

This, in itself is a check of our lengthy spectral analysis, because (4.33) and the fact

(which again we show momentarily) that the η-function contribution from Af vanishes, is

something we had anticipated from supersymmetry arguments (given that one is dealing

with a supersymmetric three-fold for getting the membrane instanton), but the same was

totally unobvious from a spectral analysis point of view.

We now do a heat-kernel asymptotics analysis of the fermionic determinant detO3.

The fermionic operator O3 can be expressed as:

O3 ≡ √
ggijΓjDi =

√
ggijΓj

(

∂i +
1

4
ωa′b′

i Γa′b′ +
1

4
ωa′b′′

i Γa′b′′

)

≡ GijΓj∂i − r, (4.24)

where

Gij ≡ √
ggij ; r ≡ −1

4

√
ggijΓj

(

ωa′b′

i Γa′b′ + ωa′b′′

i Γa′b′′

)

, (4.25)

and using the results of section 3, we set ωa′b′′

i = 0. O3 is of the Dirac-type as O2
3 is of the

Laplace-type, as can be seen from the following:

O2
3 ≡ Gij∂i∂j + Ai∂i + B, where :

Gij ≡ √
ggij ;

Ai ≡ GlkΓl∂k(G
jiΓj) + GjiGlkΓjΓlωk + GklGjiΓlωkΓj ;

B ≡ GijΓi∂j(G
klΓkωl) + GijGklΓiωjΓkωl. (4.26)

The remark regarding the dissimilar O1 and O2
3 in the introduction is justified by compar-

ing (2.8) and (4.26). Now,

O3 ≡ GijΓj 5i −φ, (4.27)

where φ ≡ r + Γiωi, and

ωl ≡
Gil

2
(−Γj∂jΓ

i + {r,Γi} + GjkΓi
jk). (4.28)

The bulk Seeley-de Witt coefficients ai are given by (See [15]):

a1(x,GijΓj 5i −φ) = −(4π)−
3
2 tr(φ);

a3(x,GijΓj 5i −φ) = −1

6
(4π)−

3
2 tr(φR + 6φE − Ωa′b′;a′Γb′), (4.29)
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where

E ≡ −1

2
ΓiΓjΩij + Γiφ;i − φ2, Ωij ≡ ∂iωj − ∂jωi + [ωi, ωj ], (4.30)

and Ωa′b′ = e i
a′e

j
b′ Ωij . To ensure that O2

3 is a Laplace-type operator, Γi ≡ 1

g
1
4
∂iX

MΓM , M

indexing the eleven (Euclidean) dimensions and ΓM being the generators of Cl(0, 11). The

boundary η-function Seeley-de Witt coefficients (See [15]) are given as:

a∂M3
2 =

1

4π
(−1

4
(

Γ(3
2)

Γ(1
2 )Γ(2)

− 1)φ −
Γ( 3

2
)

Γ( 1
2
)Γ(2)

4
Γiωi)|∂M3 ,

a∂M3
3 =

−1

3(4π)
3
2

φ;3|∂M3 . (4.31)

Using the generators of Cl(0, 7):

γ1 = iσ2 ⊗ σ1 ⊗ 12,

γ2 = iσ2 ⊗ σ3 ⊗ 12,

γ3 = 12 ⊗ iσ2 ⊗ σ1,

γ4 = 12 ⊗ iσ2 ⊗ σ3,

γ5 = σ1 ⊗ 12 ⊗ iσ2,

γ6 = σ3 ⊗ 12 ⊗ iσ2,

γ7 = iσ2 ⊗ iσ2 ⊗ iσ2,

one can construct generators of Cl(0, 11) (See [14]) as:

Γa′ = σa′ ⊗ (−σ3) ⊗ 18,

Γa′′ = 12 ⊗ iσ2 ⊗ γa′′ , (4.32)

One then sees that all the terms in the η Seeley de-Witt coefficients for O3 are of the type

tr(odd,even) + tr(even,odd) where one counts the (number of Γa′ ’s, number of Γa′′ ’s). Now,

using (4.32), one can show that tr(
∏2m+1

i=1 Γa′

i
) = tr(

∏2n+1
i=1

∏2m
j=1 Γa′′) = 0. This implies

that the bulk and boundary η Seeley de-Witt coefficients for O3 vanish.

Further, one sees that B is traceless. Analogous to the bosonic sector contribution,

one can evaluate Ai
f (f denoting fermionic contribution) and therefore calculate ωf

i ’s, and

using the latter, one gets the incredible result

tr(E(O3)) = tr(E(O2
1)) = (4.22)&(4.23)!!! (4.33)

From equations (4.22) and (4.23), we see that we get a match for the Seeley de-Witt

coefficients, for terms including O(ζ2) - in fact the non-triviality of the calculations seem to

be the perfect match of O(ζ2) terms for the bosonic and fermionic fluctuations. From (4.6),

one sees that the dependence of the embedding of the associative three-fold in the G2-

manifold is via the dependence of the same on ζ - setting ζ to zero is equivalent to the

reduction of the world-volume integral
∫

d3z(. . .)(s) =
∫

dxdydz(. . .)(x, y, z) to the world-

line integral
∫

dz(. . .) corresponding to the D0-brane of type IIA theory in the vanishing

M -theory circle limit.
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Further, using (4.8), one thus conjectures that:

ln detO3

ln detO1
=

1

2
, (4.34)

implying that the noncompact instanton has a residual supersymmetry - arrived upon from

a heat kernel asymptotics/spectral analysis point of view.

5. Conclusion

The Seeley de-Witt coefficients associated with the nonperturbative superpotential gener-

ated by an MQCD-like instanton configuration obtained by wrapping M2-brane around a

noncompact supersymmetric three-fold embedded in a (noncompact) G2-manifold relevant

to MQCD, understood as the M theory configuration dual to a type IIB configuration

compactified on a circle of vanishing radius, was considered in this paper2. The boundary

η Seeley de-Witt coefficients for the relevant fermionic operator vanish. Up to second order

in a complex parameter that is part of the embedding of the aforementioned three-fold in

the G2 seven-fold, we get a perfect match between the Seeley de-Witt coefficients between

the fermionic and one of the two bosonic determinants thereby strongly suggesting the

presence of the expected surviving supersymmetry of the nonperturbative configurations in

M -theory. From a spectral analysis point of view, the results themselves provide a remark-

able check - in particular, if one looks at the extremely long and complicated expressions

given in equations (4.22) and (4.23) for the Laplace-type operator O1, it is extremely non-

trivial to see that one gets exactly the same expression for the Dirac-type operator O3 in

equation (4.33). Further, this also shows that one might get quantum corrections from the

uncancelled ln det O2 (at least in the static gauge used). One has also to appreciate that

the quantities involved in the calculations, are not just pullback of the space-time metric

and the Gamma matrices, but involve, e.g., pseudo-metrics (because of the extra square

root of the pulled back metric).

Given the direct-product topology S× [0, 1] of the M2-brane, one can ask the question

what happens if the M2-brane does in fact end on M5-branes on the interval, or even

M9-branes. One would then have to deal with the contribution to the superpotential

coming from the M5 − M5, M5 − M9 and M9 − M9 open membrane instantons - the

M9 − M9 instantons, the M -theory analogues of world-sheet instantons, often sum up to

zero (See [23] and references therein) however. A sketch of the relevant expressions in the

context of heterotic M -theory is given in, e.g., [23]. In the context of plain M -theory on

G2-manifolds, the M5 − M5 superpotential in the supegravity approximation, e.g., would

be of the form: e
(X1−X2)

R

S
(i ∂

∂X
C+iJ)

(. . .), where Xi is the complexified position of the

M5-branes obtained from the M -theory chiral two form (corresponding to a self-dual field

strength on the M5-brane world-volume) - See [14]. Based on arguments given in [23],

one would guess (especially for “barely” G2 manifolds) that supersymmetry requirements

2For a noncompact membrane instanton, what is more appropriate to be considered is e
1

l3
11

vol(g)
∆W

rather than ∆W - the former will be independent of the volume of the noncompact instanton.
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would be met if the M -theory circle direction is an appropriate function of the interval

coordinate (x in our paper), and the other internal coordinates depend on y and z (of our

paper).

The nonperturbative membrane instanton contribution to the superpotential can be

compared with the complexified affine-Toda-like superpotential, generated by three-dimen-

sional instantons (or four-dimensional monopoles) in the compactification of the D =

4,N = 1 SYM on a circle to D = 3(N = 2 SYM), given by: W ∼ e−V + e2iπτeV

(τ ≡ 4πi
g2 + θ

2π
), where the complex field V , formed from the Wilson line for the gauge field

along the circle and the scalar dual to the three-dimensional gauge field, parametrize an

N = 2 Kähler moduli space T 2

S1 (See [24]).

The spirit of the paper is similar to the work of, e.g., Sonnenschein et al, in the

late nineties - [22] - on seeing whether or not the classical Wilson loop in an AdS5 × S5

background, received quantum corrections. In these papers, the authors provide examples

of models where the authors explicitly check whether or not one gets a cancelation between

the bosonic and the fermionic determinants implying whether or not the classical result for

the Wilson loop, receives quantum corrections.

To the best of our knowledge, a spectral/heat kernel asymptotics analysis (based largely

on the results in mathematics of Branson, Gilkey and Kirsten) for membrane instantons

obtained from a supersymmetric three-fold with boundary, embedded in a G2-manifold,

has never been worked out, and all the formulae used in this paper are extremely useful

not only in the context of membrane instanton superpotential but also quantum corrections

to Wilson loops/surfaces.
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