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ABSTRACT: We perform a heat kernel asymptotics analysis of the nonperturbative super-
potential obtained from wrapping of an M2-brane around a supersymmetric noncompact
three-fold embedded in a (noncompact) Go-manifold as obtained in [, the three-fold be-
ing the one relevant to domain walls in Witten’s MQCD [@], in the limit of small “¢”, a
complex constant that appears in the Riemann surfaces relevant to defining the boundary
conditions for the domain wall in MQCD. The MQCD-like configuration is interpretable,
for small but non-zero ¢ as a noncompact/“large” open membrane instanton, and for van-
ishing ¢, as the type ITA DO-brane (for vanishing M-theory circle radius). We find that the
eta-function Seeley de-Witt coefficients vanish, and we get a perfect match between the
zeta-function Seeley de-Witt coefficients (up to terms quadratic in ¢) between the Dirac-
type operator and one of the two Laplace-type operators figuring in the superpotential.
Given the dissimilar forms of the bosonic and the square of the fermionic operators, this
is an extremely nontrivial check, from a spectral analysis point of view, of the expected
residual supersymmetry for the nonperturbative configurations in M-theory considered in
this work.
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1. Introduction

String and M theories on manifolds with Gy and Spin(7) holonomies have become an active
area of research, after construction of explicit examples of such manifolds by Joyce [J]. Some
explicit metrics of noncompact manifolds with the above-mentioned exceptional holonomy
groups have been constructed by Brandhuber et al and Cvectic et al [f].

Further, it will be interesting to be able to lift the Gopakumar-Vafa Chern-Simons/clo-
sed type A-topological open/closed string duality to M theory on a Gg-holonomy manifold,
without having to embed it first into type ITA string theory as was done by Vafa. As
the type-A topological string theory’s partition function receives contributions only from
holomorphic maps from the world-sheet to the target space, and apart from constant
maps, instantons fit the bill, as a first step we should look at obtaining the superpotential
contribution of wrapping of an M2 brane on supersymmetric 3-cycle in a suitable Go-
holonomy manifold (membrane instantons). In terms of relating the result obtained in [ff](on
membrane instanton superpotential in terms of bosonic and fermionic determinants) to that
of the 1-loop Schwinger computation of M theory and the large N-limit of the partition
function evaluated in [ff], one notes that the 1-loop Schwinger computation also has as its

starting point, an infinite dimensional bosonic determinant of the type det((i@ —eA)? -

Z 2>, A being the gauge field corresponding to an external self-dual field strength, and Z

denoting the central charge. The large N-limit of the partition function of Chern Simons
theory on an S3, as first given by Periwal in [[f], involves the product of infinite number
of sin’s, that can be treated as the eigenvalues of an infinite dimensional determinant.
This is indicative of a possible connection between the membrane instanton contribution



to the superpotential, the 1-loop Schwinger computation and the large N limit of the
Chern-Simons theory on an S3 (See also [§]).

After the construction of noncompact (special Lagrangian) three-folds of Joyce [[] given
by the following equations (noncompact SLAGS in C?): |22 —t = |2;]? = | 2|2, Re(z12223)
> 0, Im(z12923) = 0,t > 0,9 # j # k = 1,2,3, the same have been studied in the
context of wrapping of D6-branes around noncompact SLAGS diffeomorphic to S* x R?
in [I) - see also [[J]. In this paper, we identify a noncompact instantonic configuration
in M-theory compactified on a Gs-manifold with a particular supersymmetric noncompact
three-fold embedded in the same, as relevant to domain walls in MQCD. What this means
is that we consider M theory compactified on the same Ga-manifold with a supersymmetric
noncompact three-fold embedded in it that appears in the study of domain walls in MQCD,
but we do not work with MQCD - we just “borrow” the MQCD-domain-wall G2, but
continue working with M theory which gives N’ = 1, D = 4 chiral multiplets (in addition
to gravity and U(1) vector multiplets) - there are no chiral multiplets in A/ = 1 MQCD. We
are considering the superpotential of an isolated membrane instanton obtained by wrapping
of an M2-brane on the aforementioned supersymmetric three-fold. We provide evidence
for the expected residual supersymmetry for the same, from a spectral analysis point of
view, by looking at the Seeley-de Witt coefficients associated with the Laplace-type and
Dirac-type operators relevant to the nonperturbative superpotential for small value of a
complex constant “¢” that figures in Riemann surfaces relevant to MQCD. Notice that the
reason why from the heat kernel asymptotics’ point of view, the fact that the instantonic
configuration possesses some surviving supersymmetry is not obvious is because if one looks
at the forms of the Laplace-type (bosonic) operator (the relevant one denoted in this paper
by O) and the Dirac-type (fermionic) operator (denoted in this paper by Os), then writing
0O, = Gijaiaj + X; and ©02 = Gijai(?j + X5, one sees that X7 is not the same as X5. Had
X1 equalled X5, then using a theorem of McKean and Singer ([1J]), one would have been
assured of absence of UV divergence in In det@; —In detOs. The fact that, as we will show
in section 4, one still gets a perfect cancelation (to the order considered in our work), is,
we feel, a very non-trivial result.

The main idea behind this paper is to use the heat kernel asymptotics techniques to see
whether or not the aforementioned membrane instanton superpotential receives quantum
corrections from the bosonic and fermionic fluctuations, thereby verifying the expected
(because one is using a supersymmetric three-fold for wrapping the M2-brane) surviving
supersymmetry. Further, as far as we know, a spectral analysis for supersymmetric three-
folds embedded in a Go-manifold, has never been done earlier.

The plan of the paper is as follows. In section 2, we review the calculation of the
membrane instanton superpotential of [f], which is based on [[[J] - for this work, given the
non-singular uplift to M-theory in MQCD, we assume that there is no contribution to the
superpotential from the membrane boundary. In section 3, we discuss spin connections
for associative three-cycles based on the discussion on the same in [[14]. In section 4, we
perform a heat kernel asymptotics analysis for the superpotential of section 2 and using the
results of [[[F], evaluate the bulk and boundary Seeley de-Witt coefficients for one of the two
Laplace-type operators and the Dirac-type operator. We obtain a remarkably perfect match



between the two (up to O(¢?)) thereby strongly indicative of surviving supersymmetry of
the nonperturbative configurations in M-theory considered in this work.

2. Evaluation of the membrane instanton contribution to the superpoten-
tial

In [ff], one of us (AM) had worked out the membrane instanton superpotential, using
techniques developed in [[J], based on the path-integral-inside-a-path integral approach
of [[§. We briefly review the same first.

As given in [[[4], the Euclidean action for an M2 brane is given by the following
Bergshoeff, Sezgin, Townsend action:

Sy = / d3z [13@ - %eijkGiZMBjZNBRZPCMNP(X(S), 0(s))], (2.1)
b 11 :
where Z is the map of the M2 brane world-volume to the the D = 11 target space M1, both
being regarded as supermanifolds and ¥ is the M2-brane world volume. The g in (R.1)), is
defined as:
gij = 0,2 0, ZVEN ERnas, (2.2)

where E4; is the supervielbein, given in [[4]. X(s) and ©(s) are the bosonic and fermionic
coordinates of Z. After using the static gauge and k-symmetry fixing, the physical degrees
of freedom, are given by y™", the section of the normal bundle to the M2-brane world
volume, and O(s), section of the spinor bundle tensor product: S(T%) ® S™(N), where
the — is the negative Spin(8) chirality, as under an orthogonal decomposition of T'Mi1|x
in terms of tangent and normal bundles, the structure group Spin(11) decomposes into
Spin(3) x Spin(8).

The action in (R.1]) needs to be expanded up to O(©?), and the expression is (one has
to be careful that in Euclidean D = 11, one does not have a Majorana-Weyl spinor or a
Majorana spinor) given as:

se= [
by

i 1 _ g i~
+E\/§§(\IIMVM — VM) + 2%9 10T, D;0 + 0(0%)

17 g .. " 7 7z "
C + ZTUOZ(Q) + l\/T— <gl.]Dlym D]yn hm”n” — ym um//n//yn + O(y?)))
11 11

, (2.3)

where we follow the conventions of [[4]: Vs being the gravitino vertex operator, ¥ being
the gravitino field that enters via the supervielbein Ef/l, U is a mass matrix defined in terms
of the Riemann curvature tensor and the second fundamental form, C' is the pull-back of
the M-theory three-form potential on to the world volume of the M2-brane and I';s are
pull-backs of the eleven-dimensional gamma matrices on to X.

After k-symmetry fixing, like [[4], we set ©4%(s) (A and @ index the Spin(3) and the
positive-chirality Spin(8) groups respectively), i.e., the positive Spin(8)-chirality, to zero,
and following [[[], will refer to ©7%(s) as 6.



The Kaluza-Klein reduction of the D = 11 gravitino ¥, is given by: da™W¥,; =
dzh¥,, + dz™¥,, (u indexes the four-dimensional Euclidean space R*(x) and m indexes

the Gy seven-fold Xci, (1)) W,u(w, y) = Yu(@)@9(y), U (2,9) = 1§ T4, wl),,, (1) [PIx (2)@
n(y), w® € H3(Xg,), where we do not write the terms obtained by expanding in terms of a
basis of the harmonic 2-forms of H?(X¢,), as we will be interested in M2 branes wrapping
supersymmetric 3-cycles in the GGo-holonomy manifold - I'P? is the antisymmetrized product
of two C1(0,11) generators, v, is the four-dimensional gravitino in the four-dimensional
N = 1 (super)gravity multiplet, x* are the four-dimensional fermions in the A" = 1 chiral
multiplet (M-theory compacitified on a Gy manifold would yield a four-dimensional N' = 1
theory) and 7(y) is a covariantly constant spinor on the Gy-manifold. For evaluating
the nonperturbative contribution to the superpotential, following [[4], we will evaluate
the fermionic 2-point function: (x'(z%)x’(x%)) (where x12 are the R? coordinates and
u [and later also v]= 7,8,9,10 is [are] used to index these coordinates), and drop the
interaction terms in the D = 4, N/ = 1 supergravity action. The corresponding mass term
in the supergravity action appears as 9;0;W, where the derivatives are evaluated w.r.t. the
complex scalars obtained by the Kaluza-Klein reduction of C'+ éfb (® being the closed as
well as co-closed Ga-calibration three form defined over X, ) using harmonic three forms
forming a basis for H3(Xg,,R). One then integrates twice to get the expression for the
superpotential from the 2-point function.

The bosonic zero modes are the four bosonic coordinates that specify the position of
the supersymmetric 3-cycle, and will be denoted by xg78,9710 = zf. The fermionic zero
modes come from the fact that for every 6y that is the solution to the fermionic equation
of motion, one can always shift 6y to 6y + 6’ , where D;0’ = 0. This 6/ = 9 ® ) where ¥ is a
D = 4 Weyl spinor, and 7 is a covariantly constant spinor on the Ga-holonomy manifold.

After expanding the M2-brane action in fluctuations about solutions to the bosonic and
fermionic equations of motion, one gets that: S|y, = S§ +8§ + Sy + S, where S§ = Ssly0.0
Sy = 8%+ Sg’yo,é)w S = %]yo,gozo(éy)2; SY = %ﬁyyoﬂozo(w)?. Following [[L3], we
consider classical values of coefficients of (6y)2, (66)? terms, as fluctuations are considered

to be of O(Vo/).

Now,

O (@) (a3)) =
[P E e i a) [t

x / 49 dy2eS / Doy™" e=52 / D5ODSGe 5. (2.4)
We now evaluate the various integrals that appear in (.4) above starting with [ diz x

—SY
e 0
iC— ——wol
/d4moe_3g = /d4xoe[ Hh (g)]. (2.5)

Using the 11-dimensional Euclidean representation of the gamma matrices as given in
4, 88—1—882 s = ﬁ Js \/E\TJMVMdB’s, where using 0;xz§ = 0, and using U to denote coordi-
11



nates on the G-holonomy manifold, VV = gijﬁiygaijWVHO + %eijkﬁiygajy(‘]/ﬁkygffvwﬂo,
o Tt Tact i (@)eavaw” LS N 0,0 (0@ (00l)
/dﬁ1d1926 11 = —W;KJZZI% wi’ (xo')1(xo")a,

(2.6)
where one uses that for Go-spinors, the only non-zero bilinears are: UTFil...z‘pU for p = 0(=
constant), p = 3(= calibration 3-form), p = 4(= Hodge dual of the calibration 3-form)
and p = 7(= volume form). We follow the following notations for coordinates: u,v are
R* coordinates and U,V index G-holonomy manifold coordinates. The tangent/curved
space coordinates for ¥ are represented by a//m’ and those for X, X R* are represented
by a /m".

We now come to the evaluation of S§|,, g,=0. Using the equality of the two O((0©)?)
terms in the action of Harvey and Moore, and arguments similar to the ones in [[L3],
one can show that one needs to evaluate the following bilinears: 60T, 0;60, 60T ,+0;60,
00T T 40O, and §OT,,,»T 4gIO. Evaluating them, one gets:

Stlypan-o = [ d*s5610u56, @)

where O3 = \/ggij I';D;, the precise definition of I'; will be given later. Hence, the integral
over the fluctuations in § will give a factor of v/detOs in Euclidean space.

The expression for SY|s yo.00—0 18 1dentical to the one given in (3], and will contribute
, where 01 and Oy are as given in the same paper:

1
VdetO1detOs

Ol = nuv\/ggijpiaj
Oy = \/E(gijpihUVDj +UUV)' (2.8)

The mass matrix U is expressed in terms of the curvature tensor and product of two
second fundamental forms. D; is a covariant derivative with indices in the correspond-
ing spin-connection of the type (wl),T/:l and (wi)ff,/, and D; is a covariant derivative with
corresponding spin connection indices of only the latter type.

Hence, modulo supergravity determinants, and the contribution from the fermionic
zero modes, the exact form of the superpotential contribution coming from a single M2
brane wrapping an isolated supersymmetric cycle of Go-holonomy manifold, is given by:

iC'— 3ol (h) detOs
AW = i - 2.
W=e 0\ a0, deio, (29)

Note that the result (R.9), unlike that of [[[4], is also applicable for non-rigid three-cycles
(implying b1(X) # 0). We do not bother about 5-brane instantons, as we assume that
Hg = 0 for the Go-manifold. One should bear in mind that it is only for compact Go-
manifolds X7 that H: ?‘(X 7), valued in the seven-dimensional representation of the Go-group,
and therefore H3(X7) vanishes - note however H4(X7) = H{(X7)® H#(X7)® H3,(X7) (for a
compact X7) - hence (for a compact X7), H*(X7) and hence H3(X7) is non-trivial. Besides,
we are working with a noncompact G manifold [[If]. Even though we have turned off the



G-flux and the calibration three-form characterizing X7 is closed, H*(X7) and therefore
Hs3(X7) are still non-trivial. Part of the reason is the shift of the quantization of the G-
flux (See [[7)): [%] - % € H*(X7,Z), where the characteristic class \ is given by pl(X7)
p1(X7) being the first Pontryagin class. For a Gy manifold, pi(X7) = p1(Xs = X7 x Sl),
X7 x St being a spin eight-manifold (See [[4]), for which p; is even. According to the
Wu’s formula (See [[[7]), the intersection form of a spin eight-fold satisfies the following
relation: 22 22 2 A A mod 2, where x € H*(Xg,Z). Hence, for a spin manifold, X is even if
the intersection form is even - the intersection form for Xg is even, thereby justifying the
switching off of G. Further, p;(X7) # 0! implying that H*(X7) and therefore H3(X7) can
not be trivial.

To actually evaluate the Seeley-de Witt coefficients for Laplace-type operators (See
(M.10)) we need to find an example of a regular Ga-holonomy manifold that is locally
> X My, where X is a supersymmetric 3-cycle on which we wrap an M2 brane once, and
My is a four manifold. The condition for supersymmetric cycle: ®|y; = vol(X), is what is
solved for in [fl]. Such a three-fold will be discussed in section 4 in the context of MQCD.

3. Spin Connection for Associative 3-Cycles in G, Manifolds

We now discuss how to figure out the independent components of the spin connection of the
type wf‘lb” (the superindices indexing the tangent space indices as explained below equation
(6) above: i indexes 3, @’ indexes the tangent space of ¥ and b” indexes the tangent space
corresponding to directions normal to X).

. . . . . . ’ 17
The bi-spinorial representation of the components of the spin connection wf 4 wg”b ,
/ /
w‘-l/b can be worked out as below. Let wy Vo= e blclwic . We can then construct wAB =
(23/ LWy 4250 NAB = wB (where 0% are the Pauli matrices and A, B are the bispinorial

indices), abbreviated as wj. The components W' with ", b = 6,7,8,10 can be split

into three self-dual and three anti-self-dual components:

Wi 4+ WP = (wi L
wB + w0 T = (wh)?,
wd 10+ W = (wih)?, (3.1)

and

68 10 7T — (w )
- (2
wp =Wt = (W) (3.2)
from which one constructs Z‘z ((wh)io = (w;r)yy abbreviated as w}, and Za 1(w; )"

— (wf)YY’ a't”

i , one constructs

, abbreviated as w|. For the “off-diagonal” components w

1As an example of a compact X~, one could consider —7 with fixed points for I' - see [E p1(X7)
for compact X7 with holonomy given by G2, is non-zero and satisfies the equation: (p1 U ¢, [X7]> =
— fx7 |R|? < 0 (See [E])7 ¢ being the (co)closed calibration three-form



Zg (uga/b//)a“/ = (wi)ABb”, and further (w;43612 + wiAB701 + wZAB802 + wZAB 1003)YY =

a’'=1
(w)ABYY
i .

For associative three—cycles (w)ABYY is symmetric w.r.t. A, B and Y and w) = w
7T _ 810 ,,68 __ 107 ,,6 10 _ 78

= —w;, V,w° = —w;’ w Y = —w/®, the
1 67 1,62 68 1, .3

relation w| = w] implies: §w =w)', Jwi = w®, wi = w? 10 Hence,

(See [[4].). Assuming w| = 0 implying w?

Now,
AB

3
'+2 b _a'\AB - W
(ZW?JF o) = 3b +iw4b” Z_ 5b”l . (3.4)
(]

Hence, for A= B =1 or 2, consider

YY
i( 01y + WTot + wBo? + W) 1Y 3>

YY
wl-56 + w? 10 %’57 - iw?g
wgw + iw?g w;% — wf 10 ’

=+
and for A = 1, B = 2, consider:

+ (w;ﬂ 10 _ 4 10) ( 37 _ Z(“)47) i(w38 — Z-w;lS)

(2
( ?7 _ Zw4 )_{_Z(W?S ) ( 36 Z(“)46) ( 310 _ Z-wgl 10)

—~
@
[
SO
=)}
\]\_/

Now, (wi)lni, (wi)nlé, (wi)QQQi, (wi)zmé are already symmetric in A, B,Y. Now,

(wi)nzi _ w57 + Z-w58
(wi)mu _ ( +w3 10) ( +w4 10)

(wi)?M = (WP + i} 10) 4 i(wfS + wf 19). (3.7)

Hence, w1121 wi = L2H implies

W = Wi 310 B =0; Wit = w0 (3.8)

Similarly,

1122 _ 56 5 10
) =wp W,

= (W7 = w}®) —i(w]" + W),

(wi
(wi
(wi)?"? = (W7 + w}®) —i(—w]T + W), (3.9)

)1212



and their equality would imply:
Wil =wB =wf =0, W} =w —wp 1O, (3.10)
and the equality of:

@) = @f + W) + i —wfT),

(@) = (@f - wf®) + il + W),

W = P10 36, (3.11)

implies
37 56 510 38 47 _ ), (3.12)

and finally the equality of:

Y1222 _ (36 310y (46 410y,

(wi Wi i T Wi
2122 36 3 10 s 46 4 10
(wi) = ( Wi ) + Z(wl — W )a
(wi) 222 =~ 4w, (3.13)
implies:
A8 = 10 2 B 20, T = 10 (314)
One thus gets:
3 w:w% w3 10 0001
@b % 6 A7 w4 01 =w%looo00|. (3.15)
WP C()57 WP w5 10 1101

Hence, for associative three-folds, the number of independent components in the off-

310 We will set it to zero. The off-diagonal spin-

diagonal spin-connection is one: w;
connection component being set to zero towards the end of section 3, is a consequence of
the fact that for associative three-folds embedded in a Go-manifold (See [[4]), as consid-
ered in our work, (i) the self-dual piece of the connection on the normal bundle, “wi”,
is unconstrained, and (ii) the connection on the tangent bundle, “w)” gets identified with
the anti-self dual connection on normal bundle “w|” - this is what was used in section 3.
These follow from the covariant constancy of a G spinor and describe the decomposition
of the adjoint representation of G5 C Spin(7) under SO(3) @ SO(4). The aforementioned
identification of spin connections is standard to “topological twisting” (See [[4] and refer-
ences therein) - one must keep in mind that one of the results of [I4] is that the low energy
fluctuations of an M2-brane wrapped around a supersymmetric three-fold is described by
a three dimensional topological field thory. The results of this section will be utilized
when evaluating the Seeley de-Witt coefficients for the Dirac-type operator O3 in the next

section.



4. Heat kernel Asymptotics of MQCD-like Supersymmetric Three-Fold
embedded in G, Seven-Fold

This section forms the core of the new results in this paper. We begin with a discussion
of supersymmetric three-folds relevant to domain walls in MQCD and show that a certain
infinite series, in the limit of a small complex constant ¢, can in fact be summed to give a
closed expression. We then proceed with the heat kernel asymptotics analysis by discussing
the evaluation of the generalized zeta and eta function Seeley de-Witt coefficients relevant
to the Laplace-type operator O; and the Dirac-type operator O3. The main result that
we get is (a) vanishing of the generalized eta function coefficients, and (b) a perfect match
between the generalized zeta function coefficients for O; and (9% - all calculations are done
up to O(¢?). The importance of these results was commented upon in the introduction
and we make more comments in the section on conclusion. As an aside, we discuss a
possible connection between the antiholomorphic involution relevant to Joyce’s construction
of “barely Go manifolds” from Calabi-Yau three-folds, and a similar involution symmetry
of the supersymmetric three-fold - this three-fold turns out not to be a three-cyle, but
a three-fold with boundary (this necessitates the discussion of, both, bulk and boundary
Seeley de-Witt coefficients).

In MQCD [B], discrete chiral symmetry breaking results in the formation of domain
wall separating different vacua, whose world-volume is topologically given by R3(z%2) x
S(z3*5), where S is a supersymmetric three-fold embedded in a Go-manifold that is topo-
logically R(z?) x R?(2%5678) x §1(2!%) Complexifying the coordinates, v = z* + iz’ w =
xT+ix8, s = 20 +ix'0,t = 7%, the boundary condition on S is that as 2° — —00, 5 — RxX
and as 2> — 00, S > R x Y, where L :w=Cv !, t=0v"and ¥/ : w = B%Cv_l,t =",
The calibration for G5 manifolds can be written as: ® = 123 4 136 4 145 4 235 _ o246 4
347 177 (elik = ¢ Aed AeF), and then the supersymmetric three-fold embedded in the Go-
manifold will be given as: w = w(z3,v,),s = s(x®,v,9). Then, defining the embedding as
2% = A(z,y, 2),2" = C(x,y,2),2% = D(x,y, 2),2'° = B(x,v, 2), z,y, 2 being the M2-brane
world-volume coordinates, the condition for supersymmetric cycle: ®|g = \/gdx‘?‘/\dx‘l/\dxi
after further relabeling 3% as z,x,y and after assuming: 0,A = O0yB, 0yA = —0,B(=
Cauchy-Riemann condition), translates to give:

[0, A0, A — 8,0,B + 8,C,C — 8,00,D)? + [0,A0. A + 0, AD. B + 8,C0,C + 9,C9.D]*
= [14 (8, 4) + (8,4)2 + (8,C)* + (8,C)?][(9.A)? + (8.B)* + (0.C)* + (8.D)?. (4.1)

The ansatz to solve ([.1]) for the embedding of the supersymmetric 3-cycle in the Go-
manifold, taken in [fl] was:

v e 1 2m ‘
v= [62 + (*) fzm(yl)} e'v?,
m=1

2coshys

vl > 1 2m
— Ctanhys|e % 1 ~ins
w = —(tanhys [6 +)° <2coshy3> ng(yl)] e ",
m=1
o] 2

1 m
=y — — ) ho(y) — 2iys, 42
s = - Zl<QCOShy3 2m (Y1) — 2iys (4.2)



where for the SU(2) group, fam, g2m, ham can be complex, but were taken to be real in [[I]].
The condition for getting a supersymmetric 3-cycle implemented by ensuring that the pull-
back of the calibration ® to the world volume of the 3-cycle is identical to the volume form
on the 3-cycle, gives recursion relations between the coefficients fa,, and go,, by setting
hom = 0, e.g. for m = 1, as shown in [fl],

ge%)gz — 4%,

(e T Ao+ (267 + %6_%)& —CeZDigy — (2% +

_ -y
(e +4) fo +2¢D1g2 — (P = ()go = —2C%e 2. (4.3)
One can substitute for fs from the second equation and get a second order differential
equation for g». However, it is shown that in the limit ( — 0, one can consistently set
fom = ham = 0,m > 1. Further, surprisingly, as perhaps missed to be noticed in [fl], one

also gets the following differential equation for all go,,’s, m > 1:

2alg2m + gom = O(C) - 0’ (44)

implying
gom=e€2, m> 1. (4.5)
Hence, (f.9) becomes:
v(z,2) = e%”y,
w(z,2) = — tanh(z)e® v,

1— (secg(z) )2

s(z,y) = —x — 2iy. (4.6)

One thus gets a convergent solution, unlike the case for finite ¢ as pointed out in [RI].

We now consider an M-theory instanton obtained by wrapping a Euclidean M2-brane
around the supersymmetric noncompact three-fold embedded in a Ga-manifold relevant
to MQCD, and perform a heat kernel asymptotics analysis for the membrane instanton
superpotential as obtained in (R.9) and explore the possibility of cancelations between the
bosonic and fermionic determinants. For bosonic determinants detAj, the function that
is relevant is the generalized zeta function, ((s|4p), and that for fermionic determinants
detAy, the function that is additionally relevant is the generalized eta function, n(s|Ay).
The integral representation of the former involves Tr(e~*%), while that for the latter
involves Tr(Ae~t4%) (See [[d)):

C(sl4p) =

- Oodtts_lTr e r)im(s|Ay) = /Oodtt%TrA e M), (47
P(28)/0 (€ nl6lAr) = gy | (Age”F), (47)

where to get the UV-divergent contributions, one looks at the ¢ — 0 limit of the two terms.
To be more precise (See [R0])

d
Indet Ay = —EC(S‘Ab)‘s:O

,10,



d 1 e
—_ _ - dtts_lT —tAb o= .
£ e [ e

1d 9 i T 9
IndetAy = —5—C(s|Af)]s=0 F EU(S‘Af)‘s:O + EC(SIA )s=0

jf dtt"s " Tr(Ape )] oo,
0

(4.8)

where the F sign in front of 7(0), a non-local object, represents an ambiguity in the
definition of the determinant. The ¢ (0|A?e) term can be reabsorbed into the contribution
of C’(0|A?¢), and hence will be dropped below. Here Tr = [ dx(z|...|z) = [datr(...). The
idea is that if one gets a match in the Seeley - de Witt coefficients for the bosonic and
fermionic determinants, implying equality of UV-divergence, this is indicative of a possible
complete cancelation.

The heat kernel expansions for the bosonic and fermionic determinants [[g], in three
dimensions, are given by:

*tAb Zen x, Ap)t Afe Zan x Af

(4.9)

For Laplace-type operators Ap and A?E (the b implies bosonic and f implies fermionic), the
non-zero coefficients in the bulk, are determined to be the following;:

eo(x,Ab) = (47‘(’)_%161, 62(1',145,) = (47‘()_% [OélE + OéQR [d:|, (4.10)

where R is the Ricci scalar constructed from suitable pull-backs of the metric and affine
connection, a;’s are constants, Id is the identity that figures with the scalar leading symbol
in the Laplace-type operator A, (See [[F]), and

E=B- Gij(&wj + wiwj — Wkri'gj)’
Ap = —(G71dd;0; + A'9; + B),
Gij(A + lerilld)
Ww; = .
2

(4.11)

For matrix-valued F, as will be the case for the Laplace-type O and the Dirac-type O3 in
this paper, it is understood that one has to take a trace.

From the expressions of O 23, one sees that the effective pullback of the metric (which

gets used in, e.g., (f.10) and (£.11))) on to the world volume of the supersymmetric 3-cycle
is given by:
Gn 0 G
Gij = Ji_ 0 Gyu 0],
VI Giz 0 G

— 11 —



where the components are either O(1) + O(¢?), e.g.,

\/<4+e%> (4+ e7)

G = +
2 (4+e%)
4+e% tanh(z)2 4+e% (2+cosh(2 z))2 n 2
(—4+sech(2)2)? +(44e?) (142 cosh(2 2))% +(74tjsehc(:<)z)2)2
4 2 tanh(z)> . CQ
(74Jrsech(z)2)2 dte”

e \/<4+e%> (4+ e7)

or O(¢?), e.g.,

—8 (2 4+ cosh(22)) sinh(2 z) ¢?
Gi3 =

+0()’

s \/ (4+%) (44 e2) (142 cosh(22))”

+0()?,

The corresponding vielbeins (which get used in the evaluation of spin connections

relevant to (f.15)-({.17)) are therefore given by:

0 e? e
e =10 el e

ess 0 0
where all components are of O(1) + O(¢?), e.g.,

)

ez cos(y)

V2 ((44-6%) (4+em))

612

=

2v/2 cos(y) (M +(4+e”) <<4+”) (2+cosh(22))”

(74+sech(z)2)2 (142 cosh(2 z))*

tanh(z)?2 2
+ (4+Sech(z)2)2>> ¢

5

e3 ((4+ e%) 4+ em))Z

+0(0)*,
and
0 &2 &3 0
where the components are either of O(1) + O(¢?), e.g.,

o —(%)
El=— <<1+ 4> (4+¢€" ))

( 4+-sech(z ) 4 te (142 cosh(2 z))?

4 \/5 ( (4+e 2 ) tanh( < 4+e 2 2+cosh(2 z))
+e

“((+

) (4+er))5

- 12 —
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or of O((), e.g.,

—2 cos(y) tanh(z) ¢

&2 = .
1 ez <<1 + %) (4+ ex)) : <—4 + sech(z)Q)

+0(¢)3.

The affine connection (relevant for evaluation of w? - see ([EI§) - which gets used in
the evaluation of e,s via ([L.11)) and (:10)) for G;; are given as under:

Iy, 0Q)* Tl
o) T 0@
o) T, T

| o) Th 0!
=1 T3 0" T3
o) 13, 0©)"

r$,  0(Q)* T
o()* T3, 0"
I3, 01)* T

Using Fék, one can then evaluate the various components of the curvature tensor, the

non-zero being: Ry, Ris,, Rigg, B39, Ri3, R343. Using these, one evaluates the non-zero
components of the Ricci tensor: Ry, Ri3, Roo and R33 which gives the Ricci scalar (relevant
for evaluation of the Seeley de-Witt coefficient eg(x, O1 o 2 or O2) - see (10) ):

R=0(1)+0(¢*) + O(¢h,

where the first two terms, which can be easily calculated, are relevant to the order we are
working. As the actual expression for R does not explicitly get used in this paper and is
also very long, we skip giving the same.

The three-fold is topologically M3 = R x [0,1] x S!, implying that it has a boundary
which is given by OM3 = (R x S',0) U (R x S',1). Note that configurations involving
branes wrapping noncompact cycles have been studied earlier - see [L0]. The three-fold is
given by the set of following equations:

(@1)? + (2°)? =

5 10
T T

8 10
x x
7 tan(j),

<26x6 (2 _ 3z8e Tsec(TO) _o/1— 3a8e” Tsec(%o))
7\2 812 C 4¢
()" + (2°)" =

<2_ 3x8e” 2 sec( \/ - 2 sec(x2 )> 9
(s )

(4.12)

,13,



One notices the following Zy symmetry of (4.12):

Ta7.6 — T47,6; 5810 — —T5810; ¢ — —C. (4.13)

Notice that under the above antiholomorphic involution: J = du A du + dv A dv + ds A\ ds
is reflected, and Q2 = du A dv A ds is complex conjugated. This is related to the involution
used in the construction of a G5 manifold from a Calabi-Yau three-fold using the Joyce’s
prescription: Cyéizsl

Given that the supersymmetric three-fold M3 has a nontrivial boundary, in addition
to the bulk Seeley de-Witt coefficients given by ([.1(), one also needs to evaluate boundary

Seeley-de Witt coefficients. The latter for M3 of (f.13) are given by (See [L3]):

Fi)ﬂn'laMg, (4.14)

1I;; being the trace of the second fundamental form. The second fundamental form is given

by: II;; = (n,/u,vj), where the tangent vectors u; = Egﬁ—; m,» and similarly for v;, where
m takes values 3,6,10. For 0M3, M3 being given by ({.19), II;; = n“fG%, which for the

embedding 2% = —y!, vanishes.

We now proceed with the evaluation of the bulk Seeley de-Witt coefficients as given
in (f.10). For this we would first evaluate Als (the “b” implies relevant to bosonic operators)
utilizing the results for the vielbeins obtained earlier in this section. This is done in
equations ({15)-([E17). Using the results for Als, we would then calculate w’s. The same
is done in equation (f.18) for w} - one can similarly evaluate w§ and w$. We would then be
able to calculate E/, which would enable us to evaluate e,s. This is done in equations (}.19)-
(-22).

For the operator Oy, the expressions for A} (see (2.§) and ([L.11)) ) are given as:

All; _ 5qulj (Wj‘M?, + Wj‘N(M3)<—>XG2)

0 a9 ai13 0 0 0 0
—a12 0 a3 0 0 0 0
—a13 —ag3 0 0 0 0 0
=] o 0 0 0 ags  agg  O(C)? (4.15)
0 0 0 — Q45 0 ase as7
0 0 0 — Q46 —as56 0 Qg7
0 0 0 O(C)z —as7 —agy 0

(u,v index R*-valued coordinates and N (Ms3) is the normal bundle to Ms). Similarly,

Az _ 5uUG2j (wj ‘M?) + Wj‘N(M3)<—>XG2)

- 14 —



and

0 bia by 0 0 0 0
—bis 0 by O 0 0 0
—biz —byz O 0 0 0 0
= 0 0 0 0 bys  bss  bar |,
0 0 0 —b45 0 b56 b57
0 0 0 _b46 —b56 0 b67
0 0 0  —byr —bsy —ber
Af = 80 G¥ (wjlm3 + wj| N (atm) X, )
0 cl2  c13 0 0 0 0
—C12 0 C23 0 0 0 0
—C13 —C23 0 0 0 0 0
=1 o 0 0 0 a5 e O(C)?
0 0 0 —cus 0 cs6 O(C)?
0 0 0 —ca —c56 0 O()?
0 0 0 0K 0K?* 0K?* o

where the various non-zero elements can easily be worked out.
To evaluate the ¢ Seeley de-Witt coefficients, one needs to evaluate wg’ . The expressions

for wy

One can similarly evaluate expressions for w5, using which one can evaluate E(O;)

b

are given as:

o= G
2
w111
w121
w131

E% + ES + ES, where

w112
w122
w132

E} = -G 9.}

Ein
E121
Eq31
0(¢)*
0(¢)*
0(¢)*
0(¢)*

Ev12
E122
E132
o)
o)
0(¢)*
0(¢)*

(A + GM'1T 17)

o) o) o)
o) o) o)
o) o) o)

w113
w123
w133
0(Q)*  wim
0(Q)*  wis
0(Q)*  wia
0" o)’

Eh13
Ei23

E33

0()"  Eiu
0()"  Eis
0(Q)"  Eis
0" 0()*

W145
W155
W165
w175

W146
W156
w166
w176

where the non-zero elements can be easily worked out. Similarly,

ES = —Gijwfwf

,15,
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(4.17)

) (4.18)

, (4.19)




Exi Eaiz Enz O(Q° 0O(Q)° 0(0)° 0(¢)°
By Ean  Exns O(Q)° 0(Q)° 0()° 0(¢)°
Byt Eap Eazz O(Q)° O(Q)° 0(0)° 0(¢)°
=1 00)® 0)® OK)® FEaus Fous FEus Four (4.20)
0(C)° 0(0)° 0(C)° Eawa FEoss 0 Easr
O(Q)® 0()° 0()® FEws OK)" Fas Fogr
0()° 0(Q)° 0()°® Eaa FEors  Exg  Eorr

and

Bsn Esie  Eziz 0 0 o) o
By Bz Epg 0 0 o) o
Es3 Bz Esz OO 0(Q' 0)* o)
=1 00" 01Q)* OQ)* Fsu FEss B O |. (4.21)

0©)" 0©)" 0©)" Essa  Esss  Esse  Essr
0" 01Q)" 01" Esss Faes FEsss  Eser
o))" 01" 01" 0()? Esrs Bz  Esrr

One thus gets:

tr(E(Oy)) = tr(E + ES + EY)

(A4 e) (<1536 + 219267 +64e T + 216627 — 1127 + €37) N
- 5
128 ((4 +e2) (4 +e%))?

E¢?
128 e ((4+e2) (4 + e?))

(1+ 2 cosh(22))°

where

E=(4+¢") <4237426688 + 4268851200 ¥ + 4797884672¢” + 347376574de 5
+2023406480e>" + 1003298120¢ % + 381310232¢% + 117349175 7 + 28347453¢™
+4231472¢ 7 + 267264¢> + 4(617218048 + 628211712¢ % + 705386752¢”
+512375632¢ 3 + 209013040 + 148217272¢ 5 + 56510632¢% + 17391397¢ 3 + 4212567¢*
+635494e " + 407046 ) cosh(22) — 4(554958848 + 551976960 2 + 620804864¢”
+447750848¢  + 260136512¢"
+129088208¢ 3 + 48864080¢%” + 15043796¢ = + 3621852¢™” + 532883¢ > + 33024¢>) cosh(4z)
—726663168 cosh(6z) — 733347840¢ 2 cosh(6z) — 821714944¢e” cosh(6z) — 596084096¢ = cosh(6z)
—346978944€>" cosh(62) — 172383936¢ 2 cosh(62) — 65568064¢>” cosh(62)
—20221080e & cosh(6z) — 4890248¢™* cosh(6z) — 728600¢ 3 cosh(6z)
—46080e°® cosh(6z) — 25165824 cosh(8z) — 30932992¢ 2 cosh(8z)
—32834560¢” cosh(8z) — 25648768¢ 2 cosh(8z)
—15232384¢°” cosh(8z) — 7692928¢ 5 cosh(8z) — 3094272¢*” cosh(8z) — 975624¢ 7 cosh(8z2)
—247896¢* cosh(8z) — 41180e 3 cosh(8z) — 3072¢>* cosh(8z)

,16,
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42621440 cosh (10z) 4 2031616€ 2 cosh(10z)

+2505728¢” cosh(10z) + 1632320¢ 3 cosh(10z) + 924608¢>” cosh(10z) + 455648¢ % cosh(10z)
+149152¢>" cosh(10z) + 43780e % cosh(10z) + 8748 cosh(10z) + 960e > cosh(10z)

—131072 cosh(12z) — 98304e 2 cosh(122)—110848¢” cosh(12z) —63984e ki cosh(12z) —32528¢>” cosh(12z)

—12296¢ % cosh(12z) — 5464€®” cosh(12z) — 1535¢ 7 cosh(12z) — 469¢*” cosh(l?z)) (4.23)

Despite the very complicated and long ([29) and ([£23), we will see shortly that one
gets a remarkable result, which is that the square of the relevant Dirac-type operator,
“A?c” (“f” denoting fermionic) - O% - contributes precisely as “Ap" (= 01) - see ({.33).
This, in itself is a check of our lengthy spectral analysis, because ([.33) and the fact
(which again we show momentarily) that the 7-function contribution from Ay vanishes, is
something we had anticipated from supersymmetry arguments (given that one is dealing
with a supersymmetric three-fold for getting the membrane instanton), but the same was
totally unobvious from a spectral analysis point of view.

We now do a heat-kernel asymptotics analysis of the fermionic determinant detOs.
The fermionic operator O3 can be expressed as:

.. .. 1 Y 1 10 ;g
03 = \/EgZ]FJDZ = \/EQUF] <al + Zw;l b Fa’b/ + Zw? b Fa’b”) = G”I‘]& -, (424)
where
.. .. —1 .. 1L AN
GZ] = \/EQZJ;T = T\/ggmrj <w? b Fa’b’ + w? b Fa’b”), (425)

and using the results of section 3, we set w?lb” = 0. Oj is of the Dirac-type as O3 is of the
Laplace-type, as can be seen from the following;:

03 = GY9,0; + A'9; + B, where :

Al = G”“I‘l@k(GjiFj) + GjileI’jI’lwk + leGjiFlkaj;
B = GijFi(?j(lekal) + GiijlFiijkwl. (4.26)

The remark regarding the dissimilar O; and (932’ in the introduction is justified by compar-
ing (R.§) and ([£.24). Now,
03 = Gijl“j Vi —¢, (427)

where ¢ = r + I'w;, and
= SO ¢ () 4 G, (4.28)
The bulk Seeley-de Witt coefficients a; are given by (See [[7]):
ar(z, GIT; i —¢) = —(4m) "2 tr(9);
as(z,GYT; 7; —¢) = —é(%)*%tr(w +60E — Quryyia Ty, (4.29)
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where 1
£ = —§F2F]Qij + Flgb;i — ¢2, Qij = 8le — (9jwl- + [wi,wj], (430)
and Qg = ea’;eb,jQij. To ensure that Og is a Laplace-type operator, I'; = -0, XMT,, M
4

g
indexing the eleven (Euclidean) dimensions and I'ys being the generators of C(0,11). The
boundary n-function Seeley-de Witt coefficients (See [LH]) are given as:

rQ e
1 1 5 rHre
OMs3 e 2 -1 _ 2 Tw:
2 = g 4(r(%)r(2) o= =g Fenllons
-1
ag™ = 7 &;3loM;- (4.31)
(4m)’
Using the generators of C1(0,7):
n=ic’®o' ® 1y,
Ne =0 ©0° ® 1y,
=1 ®ic @ a,
Y4 =19 ®io? ®03,
=0 @1 ®io”,
% =0’ ®1y®io”,
Y7 = i0? ®io? Qio?,
one can construct generators of C1(0,11) (See [[L4]) as:
Ty =0 ®(—0®) @ 1s,
Fa// = 12 ® iUz ® ’ya//, (432)

One then sees that all the terms in the n Seeley de-Witt coefficients for O3 are of the type
tr(odd,even) + tr(even,odd) where one counts the (number of I';/’s, number of I';#’s). Now,
using (33), one can show that tr([]27"! Ly) = tr(TT H?Zl Iyr) = 0. This implies
that the bulk and boundary n Seeley de-Witt coefficients for O3 vanish.

Further, one sees that B is traceless. Analogous to the bosonic sector contribution,
f

one can evaluate Ajc (f denoting fermionic contribution) and therefore calculate w; ’s, and

using the latter, one gets the incredible result
tr(E(03)) = tr(E(07)) = E2D&(E2I)M! (4.33)

From equations (.29) and (f23), we see that we get a match for the Seeley de-Witt
coefficients, for terms including O(¢?) - in fact the non-triviality of the calculations seem to
be the perfect match of O(¢?) terms for the bosonic and fermionic fluctuations. From (f-q),
one sees that the dependence of the embedding of the associative three-fold in the Ga-
manifold is via the dependence of the same on ( - setting ¢ to zero is equivalent to the
reduction of the world-volume integral [d®z(...)(s) = [ dzdydz(...)(x,y,2) to the world-
line integral [ dz(...) corresponding to the DO-brane of type ITA theory in the vanishing
M-theory circle limit.

,18,



Further, using ([.§), one thus conjectures that:

In detO 1
— 3 (4.34)
In det®; 2

implying that the noncompact instanton has a residual supersymmetry - arrived upon from

a heat kernel asymptotics/spectral analysis point of view.

5. Conclusion

The Seeley de-Witt coefficients associated with the nonperturbative superpotential gener-
ated by an MQCD-like instanton configuration obtained by wrapping M 2-brane around a
noncompact supersymmetric three-fold embedded in a (noncompact) Go-manifold relevant
to MQCD, understood as the M theory configuration dual to a type IIB configuration
compactified on a circle of vanishing radius, was considered in this paper?. The boundary
n Seeley de-Witt coefficients for the relevant fermionic operator vanish. Up to second order
in a complex parameter that is part of the embedding of the aforementioned three-fold in
the G9 seven-fold, we get a perfect match between the Seeley de-Witt coefficients between
the fermionic and one of the two bosonic determinants thereby strongly suggesting the
presence of the expected surviving supersymmetry of the nonperturbative configurations in
M-theory. From a spectral analysis point of view, the results themselves provide a remark-
able check - in particular, if one looks at the extremely long and complicated expressions
given in equations ([£.29) and ([.23) for the Laplace-type operator Oy, it is extremely non-
trivial to see that one gets exactly the same expression for the Dirac-type operator Oz in
equation () Further, this also shows that one might get quantum corrections from the
uncancelled In det Qs (at least in the static gauge used). One has also to appreciate that
the quantities involved in the calculations, are not just pullback of the space-time metric
and the Gamma matrices, but involve, e.g., pseudo-metrics (because of the extra square
root of the pulled back metric).

Given the direct-product topology S x [0, 1] of the M2-brane, one can ask the question
what happens if the M2-brane does in fact end on M5-branes on the interval, or even
M9-branes. One would then have to deal with the contribution to the superpotential
coming from the M5 — M5, M5 — M9 and M9 — M9 open membrane instantons - the
M9 — M9 instantons, the M-theory analogues of world-sheet instantons, often sum up to
zero (See [BJ] and references therein) however. A sketch of the relevant expressions in the
context of heterotic M-theory is given in, e.g., [BJ]. In the context of plain M-theory on
G9-manifolds, the M5 — M5 superpotential in the supegravity approximation, e.g., would

(X1—X2) [g(i_p CHiJ)
be of the form: e oX

M5-branes obtained from the M-theory chiral two form (corresponding to a self-dual field

(...), where X; is the complexified position of the

strength on the M5-brane world-volume) - See [[14]. Based on arguments given in [R3],
one would guess (especially for “barely” G5 manifolds) that supersymmetry requirements

1
. . . . . gsvol(g)
2For a noncompact membrane instanton, what is more appropriate to be considered is e'i w

rather than AW - the former will be independent of the volume of the noncompact instanton.
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would be met if the M-theory circle direction is an appropriate function of the interval
coordinate (z in our paper), and the other internal coordinates depend on y and z (of our
paper).

The nonperturbative membrane instanton contribution to the superpotential can be
compared with the complexified affine-Toda-like superpotential, generated by three-dimen-
sional instantons (or four-dimensional monopoles) in the compactification of the D =

4,N = 1 SYM on a circle to D = 3(N = 2 SYM), given by: W ~ eV + 2™V

(r= mi i), where the complex field V', formed from the Wilson line for the gauge field
g 27

along the circle and the scalar dual to the three-dimensional gauge field, parametrize an
N = 2 Kéhler moduli space g—f (See [R4)).

The spirit of the paper is similar to the work of, e.g., Sonnenschein et al, in the
late nineties - [PJ - on seeing whether or not the classical Wilson loop in an AdS; x S°
background, received quantum corrections. In these papers, the authors provide examples
of models where the authors explicitly check whether or not one gets a cancelation between
the bosonic and the fermionic determinants implying whether or not the classical result for
the Wilson loop, receives quantum corrections.

To the best of our knowledge, a spectral/heat kernel asymptotics analysis (based largely
on the results in mathematics of Branson, Gilkey and Kirsten) for membrane instantons
obtained from a supersymmetric three-fold with boundary, embedded in a Ga-manifold,
has never been worked out, and all the formulae used in this paper are extremely useful
not only in the context of membrane instanton superpotential but also quantum corrections
to Wilson loops/surfaces.

Acknowledgments

One of us(A.M.) would like to thank K. Ray, P. Ramadevi, A. Srivastava and specially
A.P. Balachandran for useful correspondences.

References

[1] A. Volovich, Domain walls in MQCD and Monge-Ampere equation, [Phys. Rev. D 59 (1999)

065005| [hep-th/9801164].

[2] E. Witten, Branes and the dynamics of QCD, [Nucl. Phys. B 507 (1997) 65§
[hep-th/9706109].

[3] D.D. Joyce , Compact riemannian 7-manifolds with holonomy go , I , Jour. Diff. Geom. 43
(1996) 291; compact riemannian 7-manifolds with holonomy Go , II, Jour. Diff. Geom. 43
(1996) 329; Compact 8-manifolds with holonomy Spin(7), Inv. Math. 123 (1996) 507.

[4] M. Cveti¢, G.W. Gibbons, H. Lu and C.N. Pope, New complete non-compact Spin(7)

manifolds, [Nucl. Phys. B 620 (2002) 29 [hep-th/010315§]; Supersymmetric m3-branes and
Go manifolds, [Nucl. Phys. B 620 (2002) 4 [hep-th/0106026]; Resolved branes and M-theory
on special holonomy spaces, hep-th/0106177;

A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, Gauge theory at large-N and new Go
holonomy metrics, |[Nucl. Phys. B 611 (2001) 179 [hep—th/0106034].

,20,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C065005
http://arxiv.org/abs/hep-th/9801166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB507%2C658
http://arxiv.org/abs/hep-th/9706109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C29
http://arxiv.org/abs/hep-th/0103155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB620%2C3
http://arxiv.org/abs/hep-th/0106026
http://arxiv.org/abs/hep-th/0106177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB611%2C179
http://arxiv.org/abs/hep-th/0106034

[5]

Y

A. Misra, On the exact evaluation of the membrane instanton superpotential in M-theory on

G2-holonomy manifold, JHEP 10 (2002) 056 [hep-th/0205297].

R. Gopakumar and C. Vafa, M-theory and topological strings, I, hep—th/9809187.
V. Periwal, Topological closed string interpretation of Chern-Simons theory, |Phys. Rev. Lett

71 (1993) 1295 [hep-th/930511§].

8]

G. Curio, Superpotentials for M-theory on a Ga holonomy manifold and triality symmetry,

VHEP 03 (2003) 024 [hep-th/0212211]|; Superpotential of the M-theory conifold and type-I1IA

string theory, [Int. J. Mod. Phys. A 19 (2004) 521| [hep-th/0212239].

D. Joyce, On counting special lagrangian homology 3-spheres, Contemp. Math. 314 (2002)
125-151 [hep-th/9907013].

S. Kachru, S. Katz, A.E. Lawrence and J. McGreevy, Open string instantons and
superpotentials, [Phys. Rev. D 62 (2000) 026001| [hep-th/9912151].

M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web,
Z. Naturforsch. A57 (2002) 1-28 [hep-th/010504§].

McKean and I.Singer, J. Diff. Geometry, 1 (1967) 43.

E. Lima, B.A. Ovrut, J. Park and R. Reinbacher, Non-perturbative superpotential from
membrane instantons in heterotic M-theory, [Nucl. Phys. B 614 (2001) 117
[hep-th/0101049).

J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep—th/9907024.

P. Gilkey , Invariance theory , the heat equation and the Atiyah-Singer Index theorems, CRC
press, 2nd ed., 1995;

P. Gilkey and T. Branson, Residues of the eta function for an operator of Dirac Type,
Journal of Functional Analysis, 108 #1 (1992) 47-87.

D. Joyce, Compact manifolds with special holonomy, Oxford University Press, 2000.

E. Witten, On fluz quantization in M-theory and the effective action, J. Geom. Phys. 22

(1997) 1| [hep-th/9609127].

K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string
theory, |[Nucl. Phys. B 456 (1995) 13(] [hep-th/9507159].

G. Cognola, E. Elizalde and S. Zerbini, Dirac functional determinants in terms of the eta
invariant and the noncommutative residue, |[Commun. Math. Phys. 237 (2003) 507
[hep-th/991003].

S. Deser, L. Griguolo and D. Seminara, Effective QED actions: representations, gauge
invariance, anomalies and mass expansions, [Phys. Rev. D 57 (1998) 7444 [hep-th/9712064)].

V.S. Kaplunovsky, J. Sonnenschein and S. Yankielowicz, Domain walls in supersymmetric
Yang-Mills theories, [Nucl. Phys. B 552 (1999) 209 [hep-th/981119§)].

J. Sonnenschein, Wilson loops from supergravity and string theory, |Class. and Quant. Grav)

17 (2000) 1257 |hep-th/9910089;

[23]

Y. Kinar, E. Schreiber, J. Sonnenschein and N. Weiss, Quantum fluctuations of Wilson loops
from string models, |[Nucl. Phys. B 583 (2000) 76| [hep-th/9911123].

G.W. Moore, G. Peradze and N. Saulina, Instabilities in heterotic M-theory induced by open
membrane instantons, [Nucl. Phys. B 607 (2001) 117 [hep-th/0012104].

— 21 —


http://jhep.sissa.it/stdsearch?paper=10%282002%29056
http://arxiv.org/abs/hep-th/0205293
http://arxiv.org/abs/hep-th/9809187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C71%2C1295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C71%2C1295
http://arxiv.org/abs/hep-th/9305115
http://jhep.sissa.it/stdsearch?paper=03%282003%29024
http://arxiv.org/abs/hep-th/0212211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA19%2C521
http://arxiv.org/abs/hep-th/0212233
http://arxiv.org/abs/hep-th/9907013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C026001
http://arxiv.org/abs/hep-th/9912151
http://arxiv.org/abs/hep-th/0105045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB614%2C117
http://arxiv.org/abs/hep-th/0101049
http://arxiv.org/abs/hep-th/9907026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C22%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JGPHE%2C22%2C1
http://arxiv.org/abs/hep-th/9609122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB456%2C130
http://arxiv.org/abs/hep-th/9507158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C237%2C507
http://arxiv.org/abs/hep-th/9910038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C7444
http://arxiv.org/abs/hep-th/9712066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB552%2C209
http://arxiv.org/abs/hep-th/9811195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C1257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2C1257
http://arxiv.org/abs/hep-th/9910089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB583%2C76
http://arxiv.org/abs/hep-th/9911123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB607%2C117
http://arxiv.org/abs/hep-th/0012104

[24] 1. Affleck, J.A. Harvey and E. Witten, Instantons and (super)symmetry breaking in
(2+1)-dimensions, |[Nucl. Phys. B 206 (1982) 413;
A. Ritz, M. Shifman and A. Vainshtein, Counting domain walls in N = 1 super Yang-Mills,
|Phys. Rev. D 66 (2002) 065015 [hep-th/0205083] and references therein.

- 292 —


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB206%2C413
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C065015
http://arxiv.org/abs/hep-th/0205083

